A regional ocean forecast-hindcast system for the Texas-Louisiana shelf contributing to rapid oil spill responses and oceanographic research

Daijiro Kobashi¹, Robert Hetland¹, Kristen Thyng¹, Martinho Marta-Almeida², Steve Baum¹
Texas A&M University, USA¹, Universidade de Vigo, IEO, Spain²

Introduction

Numerical ocean models are a useful tool to replicate ocean states on a computer. Although more and more observation data become available, their spatial and temporal coverage has still been limited. Ocean models provide spatio-temporal data which can be used to supplement lack of the coverage. Here we present how a numerical model can help contribute to a real-world problem and oceanographic research.

Numerical Model

- Based on Regional Ocean Modeling System
- 600m-3700m spatial resolution (671 x 191 grids)
- 30 vertical layers
- Realistic forcing to replicate key oceanographic processes
- Optimized for MPI on HPC clusters

Objectives

A regional ocean forecast-hindcast system has been developed. The primary objectives of the system are to provide:
- robust ocean current prediction for rapid oil spill responses
- long-term spatio-temporal data (24 years) to conduct oceanographic research.

Regional Ocean Forecast System

- Two regions: the Gulf of Mexico (GoM) and Texas-Louisiana shelf (TXLA)
- A series of Python and Shell scripts optimized for multiple processors
- Implemented on HPC clusters: Ada (primary), Terra (backup), and an in-house WS (Copano)
- Daily nowcast (1 day) and forecast (7 days for TXLA and 3 days for GoM)

Table 1: A list of ocean forecasts currently being implemented

<table>
<thead>
<tr>
<th>Region</th>
<th>Ensemble</th>
<th>Clusters</th>
<th>CPUs</th>
<th>Wall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas-Louisiana</td>
<td>No</td>
<td>Ada/Terra</td>
<td>120</td>
<td>0.1-0.4 hr (nowcast), 0.5-2 hr (forecast)</td>
</tr>
<tr>
<td>Texas-Louisiana</td>
<td>Yes (11)</td>
<td>Ada</td>
<td>120</td>
<td>0.5-2 hr (forecast) for each ensemble</td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>No</td>
<td>Copano</td>
<td>1</td>
<td><1 hr (nowcast/forecast)</td>
</tr>
</tbody>
</table>

Data Distribution

All forecast data are publicly available through:
- THREDDS server: http://barataria.tamu.edu:8080/thredds/catalog.html
- Interactive website: http://pong.tamu.edu/tabswebsite/

Oil Spill Tracking

The oil spill model is based on GNOME (General NOAA Operational Modeling Environment). We provide gridded current and wind forecasts in format compatible to GNOME. A hypothetical oil spill scenario is presented (Fig 3).

Research Examples

The hindcast model outputs have been used to study:
- Bio-physical interactions: Hypoxia [1] and Harmful Algae Bloom (HAB) [2]
- Freshwater transport and budget [3]
- Buoyancy-driven currents [4]
- Sediment transport [5]

Remarks

Our numerical ocean model predicts ocean currents for upcoming days. The forecast data are used to run an oil spill model by the state government agency and thus, have been an integral part of the state rapid oil spill response efforts. Moreover, the ocean model provides long-term spatio-temporal data, which have been used to improve our understanding of the ocean.

Acknowledgements

This project was funded by Texas General Land Office (Grant number: 10-096-088-3027). The model has been implemented on the Texas A&M University supercomputer, Ada and Terra. TAMU HPRC has played a critical role in providing necessary computational resources and in-kind supports.

References

Contact Information

- Web: http://pong.tamu.edu
- Email: d.kobashi@tamu.edu
- Phone: +1 (979) 845 4648

Figure 1: Model domain (Texas-Louisiana shelf)

Figure 2: TABS-TGLO website (prototype)

Figure 3: THREDDS server

Figure 4: Web GNOME (https://gnome.or.noaa.gov/)

Figure 5: A hypothetical oil spill projection (7 days)