

ICML | 2018

Deep k-Means:

Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions

Junru Wu¹Yue Wang²Zhenyu Wu¹Zhangyang Wang¹Ashok Veeraraghavan²Yingyan Lin²

COMPUTER SCIENCE & ENGINEERING TEXAS A&M UNIVERSITY

Motivation

- Deploying CNNs on resource-constrained platforms
- Two important concerns: Model Size + Energy Efficiency
- They are often not aligned*, so need to **consider both** in implementation

* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016

Parameter Sharing via Row-wise k-Means

Parameter Sharing via Row-wise k-Means

- For a conv layer with m filters each of size $s \times s \times c$
- Original Memory Consumption can be represented as:

$$MEM_{org} = s \times s \times c \times m + m$$

$$Weights Bias$$

• Applying K-Means* to assign weights with K clusters, the memory consumption is reduced to:

•
$$MEM_{comp} = K \times s + (-\sum_{i=1}^{N} p_i \log_2 p_i) + m$$

Weights Weight Assignment Indexes Bias

• p_i : occurrence probability of samples in the *i* th cluster.

* Compressing deep convolutional networks using vector quantization, ICLR 2015

Filter Visualization on Wide ResNet

Pre-Trained Model

Compressed Model w/o Re-Training

Deep k-Means w/o Re-Training

Wide ResNet (top-1)

GoogleNet (top-1 + top-5)

Model	$\Delta\left(\% ight)$	CR
Soft Weight-Sharing	-2.02	45
Deep k-Means WR	-16.02	45
Deep k-Means WR	-25.45	47
Deep k-Means WR	-45.08	50

Model	$\Delta^{\dagger}~\%$	$\Delta^{\ddagger}~\%$	CR
One-shot (Kim et al., 2015)	N/A	-0.24	1.28
Low-rank (Tai et al., 2015)	N/A	-0.42	2.84
Deep k-Means WR	-1.22	-0.65	1.5
Deep k-Means WR	-3.7	-2.46	2
Deep k-Means WR	-13.72	-10.05	3
Deep k-Means WR	-48.95	-48.82	4

- CR: Compression Ratio, same as defined in (Han et. al., 2015)
- Considerable Performance Drop!
- Design a re-training process that is more "suitable" for k-means?

k-Means Regularized Re-Training

- Spectrally Relaxation* of k-means ($W \in \mathbb{R}^{s \times N}$ denotes the sample matrix):
 - 1. Rewrite k-means objective: $\min_{W;F\in\mathcal{F}} Tr(W^TW) Tr(F^TW^TWF),$ ($F \in \mathbb{R}^{N \times k}$: cluster index matrix with special structure)
 - 2. Since *W* as given: $\max_{F \in \mathcal{F}} Tr(F^T W^T W F)$
 - 3. Relax the structure of F: $\max_{F} Tr(F^T W^T WF), s.t. F^T F = I$

* H Zha, X He, C Ding, M Gu, HD Simon "Spectral relaxation for k-means clustering", NIPS 2001

k-Means Regularized Re-Training

- Spectrally Relaxation of k-means ($W \in \mathbb{R}^{s \times N}$ denotes the sample matrix):
 - 1. Rewrite k-means objective: $\min_{W;F\in\mathcal{F}} Tr(W^TW) Tr(F^TW^TWF),$ ($F \in \mathbb{R}^{N \times k}$: cluster index matrix with special structure)
 - 2. Since *W* as given: $\max_{F \in \mathcal{F}} Tr(F^T W^T W F)$
 - No longer true for W as a variable during re-training!

• 3. Relax the structure of F:
$$\max_{F} Tr(F^T W^T WF), s.t. F^T F = I$$

k-Means Regularized Re-Training

- Use k-means spectrally relaxation to design a new regularizer, that keeps weights *W* "suitable" for k-means clustering
- Assume the original training objective: E(W)
- The new regularized re-training objective:

$$\min_{W,F} E(W) + \frac{\lambda}{2} [Tr(W^T W) - Tr(F^T W^T W F)],$$

s.t. $F^T F = I$

Pre-Trained Model Pre-Trained Model w/ Re-Training

Wu et al. Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions

Filter Visualization on Wide ResNet

Accuracy: 94.69%

Accuracy: 92.89%

Accuracy: 93.06%

Compressed Model w/ Re-Training

10

Deep k-Means w/ Re-Training

Wide ResNet

Model $\Delta(\%)$ CR Soft Weight-Sharing -2.0245 Deep k-Means WR 45-16.02Deep k-Means WR -25.4547Deep k-Means WR -45.085045Deep k-Means -1.63Deep k-Means -2.2347 Deep k-Means -4.49 50

Table 3. Compressing Wide ResNet in comparison to soft weight sharing (Ullrich et al., 2017).

• Minimum Performance Drop!

GoogLeNet

Model	$\Delta^{\dagger}~\%$	Δ^{\ddagger} %	CR
One-shot (Kim et al., 2015)	N/A	-0.24	1.28
Low-rank (Tai et al., 2015)	N/A	-0.42	2.84
Deep k-Means WR	-1.22	-0.65	1.5
Deep k-Means WR	-3.7	-2.46	2
Deep k-Means WR	-13.72	-10.05	3
Deep k-Means WR	-48.95	-48.82	4
Deep k-Means	-0.26	0.00	1.5
Deep k-Means	-0.17	+0.06	2
Deep k-Means	-0.36	+0.03	3
Deep k-Means	-1.95	-1.14	4

Table 4. Compressing GoogLeNet on ILSVRC12 ([†] and [‡] are top-1 and top-5 accuracies respectively).

More Experiments on CR

Model	$\Delta\left(\% ight)$	CR
TT-conv (naive)	-2.4	2.02
TT-conv (naive)	-3.1	2.90
TT-conv	-0.8	2.02
TT-conv	-1.5	2.53
TT-conv	-1.4	3.23
TT-conv	-2.0	4.02
Deep k-Means	+0.05	2
Deep k-Means	-0.04	4

Table 1. Compressing TT-conv-CNN in (Garipov et al., 2016).

Model	$\Delta\left(\% ight)$	CR
LRD	-8.32	16
HashedNet	-9.79	16
FreshNet	-6.51	16
Deep k-Means WR	-5.95	16
Deep k-Means	-1.30	16

Table 2. Compressing FreshNet-CNN in (Chen et al., 2016a).

(b) Comparison in the second convolutional layer

Computational cost *

• Measure the computational resources needed to generate a single decision (1 bit full adders)

$$DB_wB_x + (D-1)(B_x + B_w + [\log_2 D] - 1)$$

- B_w : weight precision
- B_{χ} : activation precision
- *D* is the dimensional of dot product.

*Charbel Sakr, Yongjune Kim, Naresh R. Shanbhag, "Analytical Guarantees on Numerical Precision of Deep Neural Networks" ICML, 2017

Weight/ Activation Representational Cost *

• Measure the storage complexity and communication costs associated with data movement

 $N_w|W|B_w+N_x|\chi|B_x$

- N_w , N_x : total number of times weight/ activation is used for convolution
- |W|: index sets of weights $|\chi|$: index sets of activation
- B_w : weight precision B_x : activation precision

*Charbel Sakr, Yongjune Kim, Naresh R. Shanbhag, "Analytical Guarantees on Numerical Precision of Deep Neural Networks" ICML, 2017

Verification of Energy-Aware Metrics

 We verify our Energy-Aware Metrics with MIT energy estimation^{*} tool whose results are extrapolated from actual hardware measurements.

*T.-J. Yang, Y.-H. Chen, V. Sze, "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," CVPR, 2017

Computational Resources Used in Project

High Performance Research Computing

A Resource for Research and Discovery

- Hardware Stack
 - Texas A&M HRPC Terra GPU Cluster
 - Intel Xeon E5-2680 v4 2.40GHz 14-core
 - NVIDIA Tesla K80 Accelerator
- Software Stack:
 - CUDA 8.0
 - PyTorch 0.3.1

