Simulation of Powder Spreading Process for Binder Jetting Additive Manufacturing

Guanxiong Miao, Wenchao Du, Zhijian (ZJ) Pei, Chao Ma

Texas A&M University, College Station, TX 77843
Introduction

- Binder jetting (BJ) has little shape and material limitation, and is easy to scale up.
- Powder spreading is an important part of BJ and will affect the powder bed density and final part density.
- Simulation of powder spreading process can provide guidance for print setting optimization, printer design, and materials development.

Figure 1. Binder Jetting Printing Process and Printer
Discrete Element Method (DEM)

- Discrete element method is a numerical method used to compute the motion and forces of a large number of individual particles.
- In each time step, the position, velocity, and force (acceleration) of every individual particle will be calculated and updated.
- This is a proper method to simulate the behavior of powder materials used for binder jetting printing.

Figure 2. DEM Simulation Flowchart
Model Setup

Input parameters
- Particle size distribution
- Particle material
- Roller shape and size
- Roller translational speed
- Roller rotating speed
- Layer thickness

Output parameters
- Particle stress
- Packing density

Figure 3. DEM Simulation Setup
Simulation Result

- Software: LIGGGHTS
- Cluster: Ada
- Number of cores: 8
- Memory: 5000 MB/core
- Run time: 48 h
Future Directions

- Validate the simulation result using the commercial Microjet ComeTrue T10 binder jetting printer
- Study the spreading behaviors of crushable granules
- Predict the particle stress and guide the powder preparation process
Contact Information

Guanxiong Miao, Ph.D. Student, gm2666@tamu.edu
Wenchao Du, Ph.D. Student, wenchaoduo@tamu.edu
Zhijian(ZJ) Pei, Professor, zjpei@tamu.edu
Chao Ma, Assistant Professor, cma@tamu.edu

College of Engineering
Texas A&M University
College Station, TX 77843
Simulation of Powder Spreading Process for Additive Manufacturing

Guanxiong Miao, Wenchao Du, Zhijian Pei, Chao Ma