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ABSTRACT
• High-throughput drug discovery through

deep learning.

• Novel representation of structurally-
annotated protein sequences.

• We present a semi-supervised deep learn-
ing model that unifies recurrent and con-
volutional neural networks to exploit both
unlabeled and labeled data.

• Transfer learning for new protein classes
with few labeled data.

• Embedded attention mechanism to gain
interpretability.

• Our models outperform conventional op-
tions in achieving relative error in IC50

within 5 to 10-fold.

Availability: https://github.com/Shen-
Lab/DeepAffinity

METHODS
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Data representation
• Compound: SMILES strings
• Protein: We developed Structural property se-

quence (SPS) based on predicted secondary
structure elements (SSEs), solvent accessibility,
physicochemical characteristics and lengths of
SSEs.

Semi-supervised deep learning
model
• Unsupervised learning: Seq2seq auto-

encoder models with attention mechanism
to exploit abundant unlabeled data.

• Supervised learning: Unified recurrent
and convolutional neural networks with
attention mechanism are jointly trained
starting with pre-trained encoder part of
seq2seq

• Interpretability through the embedded at-
tention mechanism

• Deep transfer learning

RESULT

Novel Representations v.s. Baseline
Pfam/Fingerprints

Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.08 (0.63) 1.11 (0.61) 0.70 (0.87) 1.13 (0.60) 1.13 (0.60) 0.64 (0.90)
Testing 1.10 (0.60) 1.13 (0.58) 0.87 (0.78) 1.13 (0.58) 1.13 (0.57) 0.87 (0.78)
ER 1.54 (0.33) 1.54 (0.30) 1.53 (0.43) 1.33 (0.43) 1.33 (0.41) 1.36 (0.48)
Ion Channel 1.07 (0.33) 1.09 (0.20) 1.17 (0.10) 1.02 (0.42) 1.04 (0.40) 0.97 (0.45)
GPCR 1.25 (0.62) 1.26 (0.57) 1.17 (0.59) 1.36 (0.30) 1.37 (0.28) 1.20 (0.64)
Time (core hours) 4.0 6.97 1571.6 0.41 3.05 974.6
Memory (Gb) 7.6 7.6 8.2 7.7 7.7 6.4

SPS representation saves 40% training time
and 20% memory while achieving the simi-
lar or better performances over test set and
lowered RMSE for generalization sets

Shallow Models v.s. Deep Models

Separate RNN-CNN Models Unified RNN-CNN Models
RF single parameter parameter+NN single parameter parameter+NN

ensemble ensemble ensemble ensemble
Training 0.64 (0.90) 0.60 (0.92) 0.56 (0.93) 0.52 (0.93) 0.47 (0.94) 0.45 (0.94) 0.42 (0.95)
Testing 0.87 (0.78) 0.89 (0.76) 0.87 (0.78) 0.84 (0.79) 0.74 (0.84) 0.73 (0.84) 0.71 (0.86)
Generalization – ER 1.36 (0.48) 1.40 (0.17) 1.48 (0.22) 1.42 (0.28) 1.43 (0.38) 1.44 (0.37) 1.47 (0.34)
Generalization – Ion Channel 0.97 (0.45) 1.05 (0.33) 1.03 (0.34) 1.02 (0.42) 1.07 (0.36) 1.06 (0.37) 0.97 (0.45)
Generalization – GPCR 1.20 (0.64) 1.18 (0.48) 1.15 (0.54) 1.19 (0.59) 1.01 (0.76) 1.01 (0.74) 0.93 (0.78)

Unified RNN-CNN models outperform ran-
dom forest and separate RNN-CNN models.
Averaging ensembles of models lower RMSE
by reducing the variance of model.

Deep transfer learning for new
classes of protein targets

Deep transfer learning models increasingly
improved the predictive performance com-
pared to the original deep learning mod-
els, given increasing amount of labeled data.
Even few labeled data is enough for signifi-
cant improvement.

Predicting target selectivity of drugs
Protein-tyrosine phosphatase (PTP) family:

Baseline rep. + RF Novel rep. + RF Novel rep. + DL

Protein comp1 comp2 comp3 comp1 comp2 comp3 comp1 comp2 comp3

PTP1B 7.80 7.83 7.80 8.38 8.15 8.42 9.42 8.64 8.11
PTPRA 7.80 7.83 7.80 8.18 8.62 8.19 8.38 8.39 7.62
PTPRC 7.81 7.84 7.81 8.22 8.49 8.19 8.41 8.44 8.03
PTPRE 7.80 7.83 7.80 8.23 8.53 8.26 7.96 8.21 7.31
SHP1 7.82 7.84 7.84 8.09 8.43 8.13 8.38 8.26 7.88

• Random forest using baseline representations
cannot tell target specificity within the PTP
family as the proteins’ Pfam descriptions are
almost indistinguishable.

• Using novel representations, random forest
correctly predicted PTP1B selectivity for
compounds 1 and 3 but not compound 2,
whereas unified RNN-CNN models correctly
did so for all three compounds.

INTERPRETABILITY

How do the compound-protein
pairs interact?

Number of SSEs Top 10% (4) SSEs predicted as binding site

Target–Drug PDB ID total binding site # of TP Enrichment Highest rank for TP
Human COX2–rofecoxib 5KIR 40 6 1 1.67 2

Human PTP1B–OBA 1C85 34 5 1 1.70 4
Human factor Xa–DX9065 1FAX 31 4 1 1.94 2

Compared to randomly ranking the SSEs, our
approach can enrich binding site prediction by
1.6∼2.0 fold for the three CPIs.

Human factor Xa–DX-9065a interaction:

The binding site was correctly predicted with a
high rank 2. And the SSE ranked first, a false
positive, was its immediate neighbor in sequence.

How are targets selectively inter-
acted?

• Position 192 has been identified as the source
of specificity: it is a charge-neutral polar
glutamine (Gln192) in Xa but a
negatively-charged glutamate (Glu192) in
thrombin.

• The ground-truth segment (black) was ranked
the 4th among 50 segments.
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