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Introduction

The Bayesian Multi-Domain Learning (BMDL) is proposed
to analysis overdispersed count data from next-generation
sequencing (NGS) experiments, with the goal of enhancing
cancer subtyping in the target domain with a limited number
of NGS samples by leveraging surrogate data from other
domains.

Ø The BMDL is a hierarchical negative binomial
factorization model for NGS counts, to derive domain-
dependent latent representations allowing both domain-
specific and globally shared latent factors.

Ø The over-dispersion is appropriately modeled and ad-hoc
pre-processing is not needed.

Ø Low-dimensional representations of counts in different
domains can help achieve more robust subtyping results.

Ø The sample relevance across domains can be explicitly
learned to guarantee the effectiveness of joint learning
across multiple domains.

Model and Inference

v Probabilistic Modeling

q Hierarchical Negative Binomial Factorization:

q Domain-Dependent Selector:

Ø The domain-dependent binary variables enable sparse
domain-dependent latent representations of count data that
help explicitly establish the relevance across domains.

Ø Across domains, the shared loading factors help achieve
more robust inference when the number of samples in
target domain is low.

Ø BMDL automatically identifies both domain-specific and
globally shared latent factors in different domains and
avoid negative transferring across domains.

Ø The shrinkage property of the priors for the factor strength
parameter !_#, facilitates learning of the number of factors
$ in practice.

v Gibbs Sampling via Data Augmentation and 
Marginalization

v Synthetic Data Experiments

The classification error of BMDL and hGNBP-NBFA as a
function of (a) domain relevance, and (b) the number of target
samples.

v Case study: Lung cancer

§ Two subtypes of lung cancer, i.e. Lung Adenocarcinoma
(LUAD) and Lung Squamous Cell Carcinoma (LUSC)
from TCGA [The Cancer Genome Atlas Research Network
et al., 2008]

§ High-related: RNA-seqV2 of LUAD and LUSC
§ Low-related: Head and Neck Squamous Cell Carcinoma

(HNSC)

Lung cancer subtyping results (average accuracy (%) and
STD)

Results
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Conclusions

Ø By introducing the hierarchical Bayesian model with
selector variables to flexibly assign both domain-specific
and globally shared latent factors to different domains,
the derived latent representations of NGS data preserves
predictive information in corresponding domains so that
accurate cancer subtyping is possible even with a limited
number of samples.

Ø As BMDL learns domain relevance based on given
samples across domains and enables the flexibly of
sharing useful information through common latent factors
(if any), BMDL performs consistently better than single-
domain learning regardless of the domain relevance level.

Ø Across domains, the shared loading factors help achieve
more robust inference when the number of samples in
target domain is low, which often is the case when
analyzing biomedical data.

Ø A new approximation methods are proposed in Gibbs
sampling inference to significantly reduce the
computational complexity.

Ø The results show that 1) using more domains with more
samples helps subtyping in target domain; 2) BMDL
avoids negative transfer even when adding low-related
domains.
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v Experimental Setup

Ø Training Procedure
§ Fix the truncation level $ = 100.
§ Consider 3,000 Gibbs sampling iterations.

§ Retain the weights {r*+}-,/ and {0/}-,/ as factors.

§ Use the last MCMC sample for the test procedure.

Ø Test Procedure
§ Apply 1, 000 blocked Gibbs sampling iterations.
§ Collect the last 500 MCMC samples to estimate the

posterior mean of the latent factor score 12
(+4).

Ø Classification
§ Train a linear support vector machine (SVM) classifier on

all 1̅2
(+4) in the training set.

§ Classify each 1̅2
(+4) in the test set.

v Compare BMDL to other Bayesian latent models

Ø NB-HDP [Zhou and Carin, 2012]
Under the NB process and integrated to HDP, NB-HDP
employed a Dirichlet process (DP) to model the rate measure
of a Poisson process (72

(+) = 0.5).

Ø HDP-NBFA
To have a fair comparison and make sure the superior
performance of BMDL is not only due to the modeling of the
sequencing depth variation across samples, we apply HDP to
model latent scores in NB factorization as well. More
specifically we model 1/2

(+) as independent gamma random
variables with scale parameter 1.

Ø hGNBP [Zhou et al., 2018] 
To evaluate the advantages of the beta-Bernoulli modeling in
BMDL, we compare the results with hGNBP, which :/+ is set
to 1.

v Scalability for Deeply Sequenced NGS data

Rather than sampling by

we approximate it as follows:

This approximation reduces the computational complexity for
sampling all from to
which can lead to significant computation saving for a large
number of genes where large counts are abundant.

Method
High-related (;!) Low-related (;!)

NB-HDP 55.22±3.69 56.52±4.61 54.57±7.73 53.83±7.79

HDP-
NBFA

63.48±1.23 65.65±4.22 54.89±7.38 51.83±8.32

hGNBP 74.13±7.07 77.61±3.54 72.94±1.70 74.55±8.84

BMDL 78.46±5.97 81.49±5.12 78.85±4.55 78.10±5.65

hGNBP-
NBFA

73.38 ± 7.29

Raw Counts 59.28 ± 5.54


