Strategies for Extending Cyber Training to Young Adults: Engaging the Future Cyberinfrastructure Workforce

Texas A&M High Performance Research Computing, College Station, Texas 77843

Overview

Identifying High-Impact Areas of Education:
Texas A&M High Performance Research Computing services thousands of researchers across the Texas A&M System. In this service, we have identified areas of computing skill and comprehension that would benefit many researchers, both new and experienced.

These areas include:
• Fluency in basic Unix/Linux operating system usage, especially in a non-GUI setting
• Experience with fundamental programming concepts, such as loops and data elements
• Experience with machine learning and its applications to real-world scenarios
• Introduction to parallelism and how to use parallelism to benefit from modern HPC resources
• Fundamental comprehension of cybersecurity implementation and practices

Multi-disciplinary training sessions provide opportunities to extend collaborations between HPC units, information technology teams, domain-specific laboratories, and Campus Programs for Minors. Thus, we sought to create an educational experience that:
1. Addresses the above areas of computing skill and comprehension
2. Targets new and upcoming members of the research community
3. Captures the attention of attendees through interactive activities and unique experiences

Learning Objectives

Introductory Level
1. Comprehension of Unix/Linux text-based interfaces
2. Ability to program in at least one high-level language
3. Understanding proper programming practices
4. Skills to utilize common tools in industry, such as Python
5. Enhanced motivation to pursue a career in STEM

Intermediate Level
1. Approaches to solving problems in cybersecurity
2. Using artificial intelligence for automation of processes
3. Applying virtual reality to create innovative methods of education.
4. Greater interest in pursuing careers in cybersecurity and related fields
5. Understanding of interfacing hardware with software

Suggested Curriculum

Introductory Level

Foundations of Computing
Students should understand how to access computational resources and complete basic tasks. These tasks are listed below:
• Navigate a Unix/Linux system without a graphical interface
• Manipulate files, directories, and processes
• Access remote systems using Secure Shell: ssh
• Automate tasks using scripts and scheduled jobs

Introduction to Programming
Students should have an understanding of basic programming practices and concepts. The practices and concepts are as follows:
• Proper syntax and naming convention
• Clear and concise comments for program functions

Harnessing HPC
Students were introduced to the field of high-performance computing and its significance to areas of research and other activities that require large amounts of computational resources by:
• Building small-scale computing clusters from Raspberry Pi’s
• Learning how a cluster communicates internally and externally
• Identifying applications of HPC

Experiential Learning via Field Trips
Facility tours connect students’ lessons to potential career paths.
• Data enter: connect cloud computing to physical machines
• Engineering facilities: witness the design process of real products
• Research laboratories: explore the roots of discovery and innovation

Intermediate Level

Python and Scripting
Students were introduced to the ubiquitous language of Python, and related programming practices. They were tasked with problem-solution sets structured like games to maintain attention. Students learned to:
• Interface Python with Raspberry Pi hardware and related peripherals
• Translate common language into Python syntax
• Build upon previously learned topics to solve present problems

Machine and Deep Learning
Through the use of image recognition algorithms built upon simple machine learning concepts that are made more complex throughout the lesson, students are taught:
• Ideas behind how machine learning is implemented
• Applications of machine and deep learning practices

Lessons in Cybersecurity
Access to powerful computing resources and systems containing private data requires a functional knowledge of good cybersecurity practices. Students are taught an overview of cybersecurity as it pertains to HPC:
• Compliance with Export Control Laws
• How SSH and encryption contribute to a secure system
• Modern implementations of Authentication and Trust

Cryptography
The concept of cryptography was taught to students with heavy emphasis on real-world applications. They were taught to solve problem sets with a wide range of solutions. Students learned:
• Encryption and decryption of data
• To identify methods of solving the context of cryptography
• The importance of cryptography in security

Applications of Virtual Reality
Students were introduced to the application of virtual reality technology in various contexts, such as:
• Data center training for cybersecurity professionals in data center management and security
• Mars planet and space station simulations for training and informing astronauts

Integration:
In both the introductory- and intermediate-level summer sessions, SCA welcomed over 50% of the participants from ethnic groups traditionally underrepresented in computing. In addition, the SCA received 100% positive feedback from participants. Participants also indicated an increased attitude toward STEM with ten participants from the intermediate-level camp applying to Texas A&M University. The students unanimously communicated their interest in further educational computation. Students also demonstrated a better grasp of the theoretical underpinnings of programming.

Outcomes

References

NSF Award #1730695, CISE-ProS
2016-2019 Short Course Material, TAMU HPRC

For more information, visit: https://u.tamu.edu/academy
Or scan the QR code to the right:

Acknowledgement

The Summer Computing Academy at Texas A&M University gratefully acknowledges support from the National Science Foundation 1730695 and the following Texas A&M University facilities: Division of Research, Division of Information Technology, Laboratory for Molecular Simulation, College of Architecture Visualization Laboratory, Engineering Innovation Center, Campus Programs for Minors, and the Aggie Experience Council.

We also extend thanks to Interdisciplinary Life Sciences Building staff for providing a hospitable environment for our lectures and activities.