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Some Definitions: Materials Science & Engineering
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Some Definitions: Processing




Accelerated Development of Materials, The Future Is Here (!)

& ENGINEERING

Department of Materials Science and Engineering, Texas A&M University TEXAS ASN UNIVERSITY

Raymundo Arrdyave MATERIALS SCIENCE

Some Definitions: Structure

twisted plywood of honeycomb-like mineralized
Homarus americanus multilayer cuticle chitin-protein planes chitin-protein plane
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N-acetyl-glucosamine a-chitin chains chitin nanofibrils chitin-protein fibers in
molecules wrapped with proteins mineral-protein matrix /\

http://www..dierk-raabe.com/biological-natural-materials/chitin/ m
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Some Definitions: Properties/Performance
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A Bit of History: Materials Development through Time
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Materials Performance over Time:

10r

STRENGTH/DENSITY (in., x10%)

Aluminum

Stone Bronze

1800 1900 2000

YEAR
*For 99% of history, materials development and performance was gradual

*Once materials science was developed as a discipline, materials performance has
evolved exponentially (although right now we have reached saturation) 7\
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Materials Development has reached Saturation in Many Applications:
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Materials Development

In prehistory:

Materials development is completely accidental
‘Wheel’ is perhaps discovered millions of times

Antiquity (begining of our civilization):

Development of rules and ‘recipes’ based on empirical observation
Nice example: ritual followed by master Japanese swordsmiths

Modern Age:

Knowledge is organized/systematized

Development of Scientific Method (experiment, observation,
development of hypotheses)

Recognition of Materials Classes

Today:

Integration of three ‘kinds’ of knowing: experiment, theory, computation
(within an informatics framework) -\
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What Materials Science is About
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The Challenge: Materials are Multi-Scale Systems!
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Materials Genome Initiative

T
Discovery —l7 I t} Deployment*
1 i 2 i 3 i 4 i 5 i 6 0 7 &
Development Property Systems Certification Manufacturing
Optimization Design and
Integration * Includes Sustainment and Recovery

Typical Time Frame ~ 15- 20 years!!!

Current activities: _ L
The Materials Genome Initiative:

Goal: Reduce Cost and Time by Half

e A
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to Market Computational
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Materials Genome Initiative
High-throughput
Computation/Experiments Multi-Scale Modeling
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Multi-Scale Computational Materials Science
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Multi-scale Modeling Example: Discontinuous Precipitation

From DFT to Microstructure Evolution:

Discontinuous Precipitation in Metallic Alloys Alloy trapped in metastable states:

2000

G(OL} U-Nb, T=400°C
Reference States:
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Multi-scale Modeling Example: Discontinuous Precipitation

Haat of Fomation, klmole
. b o = o

Discontinuous Precipitation in U-Nb Alloys
Phase Diagrams Diffusivities

Temperature: 1000 (Celsius)

ZA
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High-Throughput DFT

* DFT- First Principles Calculations
* High computational cost

* Increased computational resources make it
possible to do ‘high throughput’
computational analysis

e Tool Development: TAMMAL

ComBusTION MODELING

—
Q@ N .

CLIMATE SIMULATION

YOU MUST BE
THIS TALL

TO RIDE THE
SUPERCOMPUTER

HIGH-THROUGHPUT
MATERTALS SCIENCE

o

[Materials Project, MIT] /’:\
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High-Throughput DFT

* Many (relatively small) problems

.

* Massively parallel computing

tasks (e.g. high-throughput ab

initio) Lot
 Embarrassingly parallel

simulations (e.g. Monte Carlo)




Accelerated Development of Materials, The Future Is Here (!)

A M Raymundo Arrdyave MATERIALS SCIENCE

e Department of Materials Science and Engineering, Texas A&M University & ENGINEERING

TEXAS A&M UNIVERSITY

HT Engine: TAMMAL

Use of TAMMAL ( Texas A&M Materials

Automation Library)

Python-based suite of tools developed at

TAMU Computational Materials Science Lab - ATAT*
cluster

Arroyave Group expansion

Automated means to control the entire
workflow of computational research MDCS
Design complex computational workflows Curation
Integrate with the Materials Data Curation
System (MDCS) developed at NIST

Generates and maintains a materials database
within MS-Galaxy

Design complex analysis workflows

Alloy Theoretical Automated Toolkit (ATAT) ( [2002] A. Van de Walle et al. n
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Example: MAX Phases

» Novel class of lay ered inter- Some known 211 solid-solution ( M-site) MAX

metallic compounds with phase systems include:
unique properties : Eﬁv)iifi (Ti,Nb),AIC, (Ti,Cr)-AlC,
. Ti,Ta).AlC
792 possible MAX phasﬁes e T e T
+ Even larger set of possible . (V.Nb),AIC, (V,Ta),AlC, (V,Cr),AlC,
solution MAX phases + (Nb,Zr),AlC
+ (Cr,V).GeC

So many more possibilities exist!

Al |51 |P |S

Cd|In |Sn

T1 | Pd
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Materials Modeling as a Tool for Design
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Extrapolation to other Geometries

1. Elimination of Cu and Cu6Sn5 3. Isolated “lakes” of Sn and Thickness ratio of CuéSn5 and

Cu3Sn

mm

2. Scallop-like morphology (Cu6Sn5)
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Simulation-Assisted Interconnect Design

Packaging Application Interconnect Formation/Evolution

solder pad through chip via

————
————

L
chip 3
active circuit
_— on chip
chip 2

Computational Investigation
Multi-Physics Phase Field Modeling

T
IMC Impingement Electromigration Microelasticity —Segregation \oid Formation

Temperature (°C)
N N
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Simulation-Driven Process/Damage Maps
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Connecting Alloying/Processing-Microstructure-Properties

Attributes
Phase Constitution
Inputs: Microstructure Performance
Composition, Heat Treatment, Strength
Thermo-Mechanical Processing . . Ductility
Analysis/Discovery
A & 12004
l s
s ey 2 800-
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Models - ¥ Response Models S 400+
F —— As-cast .
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Putting Everything Together: Synergies between Experiments + Simulations
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A New Framework for Materials Design:
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The Fourth Paradigm:
A
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Model-based

15t paradigm: theoretical
Empirical science
science
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(Big) data
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Predictive analytics
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Relationship mining

Anomaly detection
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Materials Informatics
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Connections Along Materials Science Paradigm

Materials informatics can generate “inverse models” for optimization and design
e.g. Maximize a Property such that Structure follows some constraints

Engineering relationships of goals and means

A \pe rfO rma nce

Ny P= S EP=P

\0“\ Processing Structure Properties Performance

structure,

,-L"" -

. processing - _ "
= \"0 Materials informatics can generate “forward models” for predictive analytics
. o \Gﬁec’ e.g. Property = f(Processing, Composition, Structure)

Science relationships of cause and effect

QA \
o
2

%

2016 Agrawal (APL)
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Data-Enabled Materials Discovery

Users: Experimentalists, Computational scientists, Materials informaticians

/ \, Discover new

) materials
Predict
Add new data : o properties Knowledge
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Compositions summary  factors Esadback L Eeginanrieg relutiombig of gosh and meass |
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Materials Informatics in my Group
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Computational Materials Science

 Multi-scale problem must be explicitly
tackled.

 Some progress in length-scale bridging. Not
much on bridging time scales

* No unified code. Need to create interfaces
among multiple codes

* Full multi-scale approach is still incredibly
expensive
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Materials Informatics

.......
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* Materials Science’s Big Data Flavor is
mostly of the ‘Variety’ Kind

* Do not have (yet) materials informatics

infrastructure.
* Materials data is scarce and difficult to
Come by. “n'n"n»w | e e s

 |tis not clear that ‘data’ on its own is

sufficient. There is no free lunch
= Y | Various Database Platforms ﬁ
:D'F ‘ 01nongoi)}1 D
XWL Bl | o Neogj A\
Semantic - |

Web
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Beyond Computer-Aided Materials Design



Accelerated Development of Materials, The Future Is Here (!)

& ENGINEERING

® Department of Materials Science and Engineering, Texas A&M University T S e 1Ty

A M Raymundo Arrdyave MATERIALS SCIENCE

Adaptive Materials Discovery

Prior
Knowledge
Learn Predictor
Model X
Adaptive Optimal [ Apply Model ]
t e

Exploration/Exploitation o Search Spac
of Materials Design Space

Optimality Metric

Augment
Training Set

R

Success Best Experiment
(Material with Desired to Run A\
Properties)
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Forget about ‘experiments’, ‘computations’ and ‘data’ |
* Everything is essentially an ‘information source’

 There may be ways of fusing information that

> ! i
| Microstructural Attributes | | o
Fe C Mn § MICTORRNCINTAL AMTTRES H i Mechanical Model A Guide Response | Yy

exploits strengths of different ways of learning about sael] == @ et o ()

Mechanical Model

. : L ENGI=8N T2 1 Mies
materials while minimizing weaknesses I====1=u} I'

Target Material

) H s
\ Reduced Order Mechanical E \,_Properties

Experimen ts to Calibrate/Validate xperiment:
: : : [ Processing & o0 Micropillar L o
* This is still completely unexplored et )| |
4 — ;
4

—— Truth — Truth — Truth
al— 1P l— 2o gl —— Fuused 15
§ 151 sample 3152 sample / F 151 sample i
— S — b3y il F 18 2 sample
E re 1""‘*-\___/ ‘:J / ‘_"‘-\_H_ _/ E £ 34T Faped ey [P | _./
£ = i - — /]
= B = = g
ld el AT /ﬁ\g/ ik
E ; B B =
E LA ke £ A4
ES = =i 3
3
1 TR 1 z 3 1 k= 5 1 TR 1 z s 1 L 5 1 T 1 :
= (Design variable) x (Design variahle) x [ Design variable)
/ N\

Thanks to: D. Allaire and A. Srivastava m
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Fusing Multiple Sources Together

_ Ob\e(“ v 7

“ <. performa nce
Source 2: Cheap Effective propertie§/)
Model -
/;//_5,." e(“
/ e ¢Q‘°b\
Source 3: Statistical Model _,.,--/-f“";‘owa‘

Source 4: Theory
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Conclusions

 Materials Development is a Hard Problem

 Recent advances in computational resources
(hardware/software) have made computer-aided materials
development possible

 Recent emphasis on data-driven materials development
promises even more dramatic advances

 There are limitations in these approaches, that can be
alleviated if we instead go source-agnostic



