A Membraneless High-throughput Micro-separator
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We have developed a microfluidic platform capable

of enabling rapid size-based separations of
micron-scale species (particles, cells)

Embedded welr-like barrier separates two lanes with
unequal depths, oriented parallel to the flow direction
and extending along the entire centerline length

= Merges high selectivity of a physical membrane barrier
with ability to operate at high flow rates (mL/min),
making It possible to process large volumes with no

clogging
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Method Flow Rate Dilution Factor Throughput CTC Comments
(reported) oy recovery
(mL minY)
This work 1 mL min-t 5 0.2 99 % J thlmal operation at
high flow rates
Immunoselection 10 mL h-1 > 1* unknown* 90 % » Antibody-based
(bead-based) 240 pL min-. > 1* unknown* 85 % « Additional washing
1 mLht 1 0.017 65-80 %

i * Antibody-based
Imr_nunoselectlon 1 mL -1 1 0.017 95 % y |
(micropost array) « Low volume capacity

2 mL h1 1 0.03 92 %
1.5 ml min-1 40,000 3.75x10° 90 %
Dielectrophoresis _ » Special buffer conditions
P 126 pL min-t 400 3.15x 104 75 % P
Physical barrier « Dilution and/or low flow
* Pool-dam 0.1 mL min-! 5,000 2x10° 99 % rate operation needed to
« Isolation wells 0.7 mL h-t 3 3.9x 1073 80 % avoid clogging
Hydrodynamics o
_ - . « Dilution and/or low flow
. Expanspn/ 0.4 mL min 20 0.02 80 % rate operation needed to
contraction 4 cloqai
» Microvortex trapping 4.5 mL min-1 40 0.11 85 % avold clogging
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Particle-based experiments, 3D simulations (STAR-CCM+)
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Curved, equal depth

* Inner and outer lanes: 40 um
= centerline barrier gap: 5 pum
* radius of curvature: 500 um

Particle size: 2 ym
Flow rate: 2 mL/min

Dean vortices in curved region
transport a few small particles
across gap to the outer lane

Cross Flow
(m/s)
u0

Straight, unequal depth
= Lane 1: 40 pum

= Lane 2: 20 um

= centerline barrier gap: 7 um

Flow rate: 2 mL/min

Pressure difference at entry
drives particle migration from
shallow lane into deep lane

Particles in the deep region
remain concentrated near the
barrier and are able to cross
back into the shallow region

Ratio of transverse to lateral
pressures governs transport
across barrier
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Curved, unequal depth

* [nner lane: 20 pm

= Quter lane: 40 um

= centerline barrier gap: 7 um
= radius of curvature: 500 pm

Flow rate: 2 mL/min

Dean vortices coupled with
entry pressure difference

Particles cross to outer lane
due to pressure difference at
entry

After crossing the barrier,
transverse circulation in the
curved region keeps particles In
the outer lane

Size selectivity can be further
tuned by manipulating inertial
effects in curved segment
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High separation efficiencies can be maintained
across flow rates from 0.1 — 2.0 mL/min, making this
approach ideal for high-throughput processing
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