A Membraneless High-throughput Micro-separator

Byung-Hee Choi¹, Jen-Huang Huang¹, Aashish Priye¹, Bryan Presley², Arul Jayaraman¹, and Victor M. Ugaz¹

¹Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA ²Design 1 Solutions, USA

Solutions

We have developed a microfluidic platform capable enabling rapid size-based separations of Of micron-scale species (particles, cells)

- Embedded weir-like barrier separates two lanes with unequal depths, oriented parallel to the flow direction and extending along the entire centerline length
- Merges high selectivity of a physical membrane barrier

Separation Performance

Particle-based experiments, 3D simulations (STAR-CCM+)

0.25

(%) **60** ш У 40-

Dimensionless pressure

Flow rate (mL/min)

Curved, equal depth

- inner and outer lanes: 40 μm
- centerline barrier gap: 5 µm
- radius of curvature: 500 µm

Particle size: 2 µm

Flow rate: 2 mL/min

Dean vortices in curved region transport a few small particles

across gap to the outer lane

with ability to operate at high flow rates (mL/min), making it possible to process large volumes with no clogging

Straight, unequal depth **Cross Flow** Lane 1: 40 μm (m/s) 2.5 🗾 0 Lane 2: 20 μm centerline barrier gap: 7 µm Shallow Deep Flow rate: 2 mL/min • Exp **Pressure difference at entry ΔH = 20 µm** drives particle migration from shallow lane into deep lane Particles in the deep region remain concentrated near the barrier and are able to cross H deep = 40 i back into the shallow region Ratio of transverse to lateral pressures governs transport across barrier 0.75 1.25 1.75 2.25

Curved, unequal depth

- Inner lane: 20 µm
- Outer lane: 40 µm
- centerline barrier gap: 7 μm
- radius of curvature: 500 µm

Flow rate: 2 mL/min

Etched design

Machined design

Injected mixture:

PC3 spiked blood

Outlet (outer lane):

separated RBCs

Outlet (inner lane):

enriched PC3 cells

Outer lane

RBC

80 -

60 -

40 -

WBC

Injected

mixture

Outer Inner

lane

Particles cross to outer lane due to pressure difference at entry

After crossing the barrier, transverse circulation in the curved region keeps particles in the outer lane

Size selectivity can be further tuned by manipulating inertial effects in curved segment

PC3 cells (20 – 30 µm dia.) spiked into whole blood diluted 1:5 with PBS to equalize viscosities ♦ PC3: 1.43 x 10⁶ cells/mL ♦ WBC: 1.45 x 10⁶ cells/mL ♦ RBC: 8.12 x 10⁸ cells/mL

- PC3 spiked blood injected into the inner inlet at 1 mL/min
- PBS co-injected into the outer inlet at the same flow rate (20-3-35 µm depths)
- PC3 cells separated with > 99% efficiency and enriched by 2.2x

• 6 mL sample processed in 6 min

Method	Flow Rate (reported)	Dilution Factor	Normalized Throughput (mL min ⁻¹)	CTC recovery	Comments
This work	1 mL min ⁻¹	5	0.2	99 %	Optimal operation at high flow rates
Immunoselection (bead-based)	10 mL h ⁻¹	>1*	unknown*	90 %	• Antibody-based
	240 µL min ⁻¹	> 1*	unknown*	85 %	 Additional washing
Immunoselection (micropost array)	1 mL h ⁻¹	1	0.017	65-80 %	Antibody-basedLow volume capacity
	1 mL h ⁻¹	1	0.017	95 %	
	2 mL h ⁻¹	1	0.03	92 %	
Dielectrophoresis	1.5 ml min ⁻¹	40,000	3.75 x 10 ⁻⁵	90 %	• Special buffer conditions
	126 µL min-1	400	3.15 x 10 ⁻⁴	75 %	
Physical barrier					• Dilution and/or low flow
• Pool-dam	0.1 mL min ⁻¹	5,000	2 x 10 ⁻⁵	99 %	rate operation needed to avoid clogging
• Isolation wells	0.7 mL h ⁻¹	3	3.9 x 10 ⁻³	80 %	
Hydrodynamics					• Dilution and/or law flow
• Expansion/	0.4 mL min ⁻¹	20	0.02	80 %	• Dilution and/or low flow rate operation needed to
contractionMicrovortex trapping	4.5 mL min ⁻¹	40	0.11	85 %	avoid clogging

20 µm

7 μm

3.0 µm particles

40 µm

High separation efficiencies can be maintained across flow rates from 0.1 – 2.0 mL/min, making this approach ideal for high-throughput processing

Acknowledgments: Cancer Prevention & Research Institute of Texas (CPRIT grant RP150421); Texas A&M High Performance Research Computing

Artie McFerrin Department of CHEMICAL ENGINEERING

TEXAS A&M & ENGINEERING