Interaction Between Weather in the Ocean & Atmosphere
Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan

Ocean Eddy Activity Measured from Space

Source: P. Cipollini, NOC, from AVISO altimetry data.
Schematics of Eddy Generation Mechanism

Interaction Between Weather in the Ocean & Atmosphere
Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan
Interaction Between Weather in the Ocean & Atmosphere
Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan

Warm Anticyclonic vs Cold Cyclonic Eddies

Modified after Zhang et al. (2014)
What Do We Know About Ocean Mesoscale Eddies

- Oceanic analogy to storms in the atmosphere, generated mostly by hydrodynamic instabilities near the 1st baroclinic Rossby deformation scale, and ubiquitous in the oceans.
- Eddy energy generally exceeds the mean flow energy by an order of magnitude or more.
- 10 ~ 300 km in diameter, one rotation in 10 ~ 30 days, move at speeds of ~ 0.5 knots (~0.25 m/s), can last for months.
- Transport mass, heat, salt, carbon, and nutrients and play a significant role in the global budgets of these quantities.
- Strong impact on the ecosystem, and on most operational oceanography applications (e.g., marine safety, pollution monitoring, offshore industry, fisheries, etc.).
- Strong SST anomalies that can directly interact with the atmosphere, exerting local and remote influence on climate.
Observational Evidence for Eddies’ Impact

(Modified after Frenger et al., 2013)
Interaction Between Weather in the Ocean & Atmosphere

Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan

Ocean Mesoscale Eddy - Atmosphere (OMEA) Feedback Mechanism

(Modified after Frenger et al., 2013)
Temporal Correlation Between Spatially High-pass Filtered Satellite Measured QuickSCAT Wind Speed and AMSR SST (2002 to 2006)
Temporal Correlation Between Spatially High-pass Filtered Simulated Wind Speed and SST From Std CCSM4 (1° Ocean and 0.5° Atmos)
Temporal Correlation Between Spatially High-pass Filtered Simulated Wind Speed and SST From H-Res CCSM4 (0.1° Ocean & 0.25° Atmos)
Quantifying the Effect of Ocean Eddies on the Atmosphere

In the Kuroshio Extension region more than 80% of the SST variance can be explained by the mesoscale SST.

Interaction Between Weather in the Ocean & Atmosphere

Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan
WRF model (27 km, 30-levels) faithfully reproduced the observed surface wind – SST relationship that high (low) wind speed coincides with warm (cold) eddies in the Kuroshio extension region, as shown by Chelton et al. (2004)
WRF not only simulates the observed surface wind – SST relationship, but also reveals a well-defined PBL height and CAPE response to meso-scale SST forcing.

(From Ma et al. 2015)
Difference in Rainfall Response Between MEFS and CTRL

Simulated Rainfall Difference (MEFS-CTRL Simulations)

In the KE region, presence of ocean eddies produces more intense rainfall events.

In the USWC, presence of ocean eddies produces less intense rainfall events.

(From Ma et al. 2015)
Removing ocean eddies causes a southward shift in the jet stream and upper level storm track in the eastern north Pacific and an equivalent barotropic response.

(From Ma et al. 2015)
Variability of the Kuroshio Observed by Satellite SSH

The Kuroshio exhibits well-defined interannual to decadal variability in its meandering pattern.

Qiu et al. (2014)
TRMM Rainfall Analysis

(a) Synthesized KE Index

Qiu et al. (2014)

Inactive Eddy Years (IEYs)

Active Eddy Years (AEYs)

(From Ma et al. 2015)
How Can OMEA Feedback Affect the Kuroshio Extension Current and Front?
Interaction Between Weather in the Ocean & Atmosphere

Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan

A Loess filter of half width 15°x5° was used to separate small-scale from large scale variability.

Large-Scale THF-SST Relationship vs. Small-Scale THF-SST Relationship

Large-scale variability has higher frequency with atmosphere leading ocean, suggesting that atmosphere forces ocean. Small-scale variability has lower frequency with zero lag, suggesting that atmosphere and ocean are coupled.
Interaction Between Weather in the Ocean & Atmosphere

Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan

9km-CRCM SST-Filtered Simulation
Ocean Eddies in CTRL and Filtered 9km-CRCM Simulations

PDFs of Ocean Eddies

- Cyclonic Eddy
- Anticyclonic Eddy

Turbulent Heat Flux Composite

- Cyclonic
- Anticyclonic

Interaction Between Weather in the Ocean & Atmosphere

Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan

(From Xue Liu)
Difference in SST and EKE Between CPL-MEFS & CPL-CTRL

- Substantial surface warming (~3-5°C) occurs north of the Kuroshio after filtering the effect of ocean eddies on atmosphere
- ~40% increase in mesoscale eddy kinetic energy in the absence of OMEA feedback

(From Zhao Jing)
Difference in the KE Between CPL-MEFS and CPL-CTRL

Interaction Between Weather in the Ocean & Atmosphere
Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan
Interaction Between Weather in the Ocean & Atmosphere
Ping Chang, Department of Atmospheric Sciences, Texas A&M University
Contributions from Xiaohui Ma, Raffaele Montuoro, Xue Liu, Zhao Jing, R. Saravanan

Maintenance of Kuroshio Front by OMEA Feedback

Reduced Latent & Sensible Heat Flux

Kuroshio Front

Enhanced Latent & Sensible Heat Flux

Following Eden et al. (2007)

Production
Conversion
Dissipation

\[\overline{u'} T' \cdot \nabla \overline{T} \approx \overline{w'T'} \frac{\partial \overline{T}}{\partial z} + \overline{T'} \frac{\partial Q'}{\partial z} \]

\[T'Q' \rightarrow \text{Affected by OMEA!} \]
Summary

• Available high-resolution satellite observations and climate model simulations reveal a strong OMEA interaction
• This interaction not only affects local atmospheric boundary processes, but more importantly may remotely affect large-scale atmospheric circulations and thus climate variability
• OMEA feedback can further impact ocean circulations, affecting the maintenance of strong oceanic fronts
• Much remains to be understood about OMEA interaction and its potential impact. Observations and models need to be improved to fully resolve the multi-scale processes
Resolution of Climate Models

Resolution of Ocean Component of Coupled IPCC models

Fox-Kemper et al. (2014)