
Vertex Cover

Given a graph G, a vertex cover of G is a vertex subset C such that every edge of G is incident to

a vertex in C. Within the set of all vertex covers, there exists a minimum vertex cover such the car-

dinality of this cover is less than or equal to the cardinality of all other vertex covers of G. Resolv-

ing the minimum vertex cover of a graph is one of Karp's 21 NP-complete problems (1972). Cur-

rently, the best exact algorithm to find a minimum vertex cover is of complexity O(1.2018n), which

is highly impractical for large datasets.

Parameterized Vertex Cover

From another perspective, the parameterized vertex cover problem is to find a vertex cover of at

most k vertices. The fastest documented algorithm for the parameterized problem is of complexity

O(1.2738k+n).

Application

An application of the parameterized problem is to solve the phylogeny problem. Data from NCBI

is downloaded, and preprocessed to generate graphs. Algorithms have been implemented on clus-

ters to find vertex cover of at most k vertices for those graphs.

GPGPU Implementation

GPGPUs are successful in improving performance of programs and algorithms. However, graph

algorithms are not easy to be implemented on GPGPUs with significant performance speedup. We

are investigating the challenges and opportunities for implementing those algorithms on GPGPUs

for the parameterized vertex cover problem. Such investigations will result in new perspectives and

methods on algorithm engineering of complex algorithms.

Hardware

The Vertex Cover Problem

 Classical problem NP-Complete Problem (one of the twenty-one Karp’s NP-Complete Problems)

Fixed-Parameter Tractable Algorithm (FPT)

 Parameter k (positive integer)

 Determine whether a vertex cover of at most k vertices exists or not

Our Approach

 Distribute computation between CPU and GPU (graph decomposition)

 Synchronize computation between CPU and GPU

 Synchronize threads in a block

 Apply reduction rules for vertices with more than k edges, and degree 1 vertices

Results

 Tested on graphs produced from biological data

 Current implementation achieves more than 5x speedup

Introduction

Results & Conclusions

Purpose & Application

Profiling and Optimization

 Collect time required for polling states in GPU

 Collect time required for memory copy between CPU and GPU

Multiple GPU

 Our current experiments showed around 30% slowdown if two GPUs are used

MPI + GPU

 For difficult graphs, multiple CPUs + GPUs are necessary

 Load balance is very important

Redesign of Algorithm

 Important to use threads in a block more efficiently

Dynamic Configuration

 Different input graphs demand different configurations for optimal performance

Future Research

Finding Vertex Cover: Acceleration via CUDA

Techniques

Distribution of Computation

 Important for performance

 Controlled by thresholds

 Non-negative integer t

 Subgraphs with no more than t vertices are sent to GPU for processing

 Adjustable by input to control the distribution of computation

 For optimal performance, t is different for different input graphs

Synchronization of Computation

 Copy subgraphs to GPU

 CUDA memory asynchronous copy on separate stream

 Concurrent kernel execution on separate stream

 Poll GPU states

 Pin mapped memory

 Synchronization among threads in a block

 Shared memory

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No 1442734. This work was supported in part by

the computing resources and technical support of High Performance Research Computing at Texas A&M University.

We would like to extend thanks to Michael Langston and Gary Rogers for providing us with the graph data used throughout the benchmarking

process. Additionally, we would like to thank Robert Crovella for his helpful discussion on CUDA.

 References

[1] R. Kabbara. A Parallel Search Tree Algorithm for Vertex Covers on Graphical Processing Units. Master Thesis, Lebanese American

 University, 2013

[2] D. Weerapurag, J. Eblen, G. Rogers, and M. Langston. Parallel Vertex Cover: A Case Study in Dynamic Load Balancing. Pp 25-32.

 Proceedings of the Ninth Australasian Symposium on Parallel and Distributed Computing (AusPDC), 2011, Perth, Australia.

Acknowledgements & References

Input: G, k

FPT_VC(G,k)

|G’| <

Threshold?

create an instance P includes:

G’, k’, ID and vertex mapping

FPT_VC_CPU(G,k)

G’, k’

G = G’

k = k’

FPT_VC_GPU<<<1,n>>>(P)

pass to GPU kernel

Y

N

Input: G, k

Pick a vertex v from G

k’ = k - 1

Put v in

tmpC?

Put v’s neighbor set N

into tmpC

k’ = k - |N|

G’ = {G | delete all edges

 connected to N}

G’ = {G | delete all edges

 connected to v}

Is tmpC a

cover of G?

FPT_VC(G’,k’)

FPT_VC(G,k)

Y N

Y

N

Output:

Found

Yang Liu, High Performance Research Computing, Texas A&M University

Jinbin Ju, Electrical Engineering, Texas A&M University

Derek Rodriguez, Computer Engineering, Texas A&M University

Figure 4 — Distribution and Synchronization of Computation

Listen()

Output()

Block

(0,0)

Block

(1,0)

Block

(2,0)

Block

(0,1)

Block

(1,1)

Block

(2,1)

Init()

Create_

instance()

Kernel

GPU

CPU

Block

Thread

(0,0)

Thread

(1,0)

Thread

(0,1)

Thread

(1,1)

Thread

(0,2)

Thread

(1,2)

Thread

(2,0)

Thread

(3,0)

Thread

(2,1)

Thread

(3,1)

Thread

(2,2)

Thread

(3,2)

Thread

(4,0)

Thread

(4,1)

Thread

(4,2)

shared memory

Decompose()

The original graph’s

algorithm tree

G’ mapping |G’| k’

The reduced algorithm tree of an instance

(subgraph with |G’| <= Threshold)

Branching Process

 Pick a vertex v (max degree)

 Two branches

 Put v in vertex cover (left branch)

 Put v’s neighbors in vertex cover (right branch)

 Branch recursively until

 a vertex cover of at most k vertices is found

 or no such vertex covers exist

 Imbalanced Search Tree

|G’| = |G| – 1

k’= k - 1

|G’| = |G| - |N| - 1

k’ = k - |N|

on CPU

on GPU

Figure 2 — Branch Searching Process

Reduction Rules

 No branching for vertices

 With more than k neighbors

 With degree 1

 With degree 2 if max degree is 2

GPU Program

 Configurable number of blocks

 Around 60

 Configurable number of threads per block

 32

 Degree Arrays per block are in shared

memory

Figure 3a — GPU Program Flow Chart Figure 3b — CPU Program Flow Chart

CPU Program

 No dynamic change of input

graph

 Use degree arrays and original

input graph to infer subgraph

information

 Adopt reduction rules

Figure 1— Examples of Vertex Covers

Table 1— Program Running Times

Graph-k Serial (s) CPU+GPU (s)

est30-k981 11085 1286.8476

est30-k982 3336.282 370.7691

est30-k983 6.3398 0.96515

est35-k983 2990.1624 432.88845

est35-k984 312.4582 44.14175

est40-k984 808.8308 109.69125

est40-k985 108.4648 13.27725

est45-k986 281.0682 48.1827

est45-k987 6.412 1.4582

fo30-k982 29694.2858 3122.20845

fo30-k983 1693.952 183.39125

fo30-k984 6.412 1.1273

fo35-k984 6733.2666 1016.94735

Graph-k Serial (s) CPU+GPU (s)

fo35-k985 264.1242 40.5193

fo40-k985 2097.998 357.0809

fo40-k986 149.4656 22.48525

fo45-k986 544.4594 93.7265

fo45-k987 42.2078 7.02375

inf30-k883 1501.6508 197.52165

inf30-k884 351.2456 44.5824

inf35-k884 406.5822 47.23765

inf35-k885 386.9278 43.1862

inf40-k886 148.9256 25.4885

inf40-k887 15.463 3.35825

inf45-k887 71.5358 17.22985

inf45-k888 0.9304 0.5575

Summary

 For 11 out of 26 input graphs, the speed up factor is greater than 7

 For 22 out of 26 input graphs, our program has speed up factor of

more than 5

Figure 5 — Speedup of CPU+GPU Program Over Serial Program

 CPU GPU

 Intel E5-2670 v2 Nvidia Telsa K20m

Number of Cores 10 2496

Peak Performance 400 GFLOPS 3.52 TFLOPS

Memory 64 GB 5 GB

