SYNERGISM BETWEEN THEORY AND EXPERIMENTS

<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>conformational sampling</td>
</tr>
<tr>
<td>DFT</td>
<td>aromaticity index</td>
</tr>
<tr>
<td>TDDFT</td>
<td>spectroscopy</td>
</tr>
</tbody>
</table>

Examples:
- **MD:** conformational sampling
 - Frames
 - Energy (kcal/mol)

- **DFT:** aromaticity index
 - Aromatic
 - Non-aromatic

- **TDDFT:** spectroscopy
 - Collaboration with C. Bolm (RWTH Aachen)
 - Org. Lett. 2019, 21, 4293

Software:
- HPRC: TERRA cluster
- DFT and TDDFT: Gaussian 16
- MD: Materials Studio
 - 28 cores, 24h
SYNERGISM BETWEEN THEORY AND EXPERIMENTS

DFT → Predict and assign $^{13}C\{^1H\}$ signals in platinum end-capped polyynes

HPRC: TERRA cluster
Gaussian 16 computational software
28 cores, 150 h
SYNERGISM BETWEEN THEORY AND EXPERIMENTS

DFT → Origin of Shielding and Deshielding Effects in NMR Spectra of Organic Conjugated Polyynes

HPRC: ADA cluster
DFT: Gaussian 16
20 cores, 6 h
SYNERGISM BETWEEN THEORY AND EXPERIMENTS

HPRC: ADA cluster
DFT: Gaussian 16
20 cores, 150+ h