Abstract
Learning to optimize has emerged as a powerful framework for various optimization tasks.
- Current such “meta-optimizers” often learn from the space of continuous optimization algorithms that are point-based and uncertainty-unaware.
- We learn in an extended space of both point-based and population-based optimization algorithms.
- We incorporate the Boltzmann-shaped posterior into meta-loss to guide the search in the algorithmic space and balance the exploitation-exploration trade-off.
- Empirical results over non-convex test functions and the protein docking application demonstrate that this new meta-optimizer outperforms existing competitors.

Methods
- **Updating Rules**: Iterative optimization algorithms, either point-based or population-based, have a common generic expression of update formulas:
 \[x^{t+1} = x^t + \delta x^t \]
 The update is often a function \(g(\cdot) \) of the historic sample values, objective values, and gradients. For instance: in particle swarm optimization (PSO), we have
 \[\delta x^t = g(x^t, f(x^t), \nabla f(x^t)) \]
 In our approach, we parameterize the update rule \(g(\cdot) \) through RNN, and introduce **intra- and inter-particle attention mechanisms**:
 \[g(x) = \text{RNN}(\alpha_{\text{inter}}(\{w^t(x_i^{(t)} | S^t_{\text{in}})\}_{i=1}^{n}), \alpha_{\text{inter}}(\{w^t(x_i^{(t)} | S^t_{\text{in}})\}_{i=1}^{n}), \alpha_{\text{intra}}(\{w^t(x_i^{(t)} | S^t_{\text{in}})\}_{i=1}^{n}) \]
- **Population-based and Point-based Features**: Inspired from both point- and population-based algorithms, we choose the following four features for particle \(i \) at iteration \(t \):
 - **Grad**: \(F(x^t) \)
 - **Momentum**: \(m_i = (1 - \beta)d^t \nabla f(x^t) \)
 - **Velocity**: \(v_i = \alpha \cdot v_i - \delta x^t \)
 - **Attention**: \(\text{softmax} \) for all \(j \) that \(f(x_j^t) < f(x_i^t) \), \(\alpha \) is the hyperparameter and \(d_i = |x_i - x_j| \)
- **Loss Function**: In order to balance the exploitation–exploitation tradeoff, we combine the cumulative regret and the entropy of the posterior over the global optimum:
 \[f_j(\phi) = \frac{1}{3} \sum_{i \neq j} f(x_i^t) + \lambda \log(p(x_i^t, D_i, X_j^t)), \]
 where the posterior is a Boltzmann distribution \(\beta \):
 \[p(x_i^t, D_i, X_j^t) \propto \exp(-\beta f(x_i^t)) \]

Test Function Results
- **LOHS outperforms DM_LSTM** [1] and hand-engineered algorithms for non-convex Rastrigin functions:
 \[f(x) = \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} \cos(2\pi x_i) + a \]

Protein Docking Results
- **Ab initio protein docking** represents a major challenge for optimizing a noisy and costly function in a high-dimensional space [3]. We parameterize the search space as \(\mathbb{R}^{2D} \) as in [3]. The final \(f(x) \) is fully differentiable and the search space is \(x \in \mathbb{R}^{2D} \).
- **LOHS outperforms PSO3 in energy scores for three protein-protein pairs of various difficulty levels.**

References

Acknowledgement
This work is in part supported by the National Institutes of Health (RUG2M124592 to YS). Part of the computing time is provided by the Texas A&M High Performance Research Computing.