CyberGIS-Compute: Simplifying Access to High Performance Computing for your Geospatial Computation

Furgan Baig and Alexander Michels

CyberGIS Center for Advanced Digital and Spatial Studies Informatics Program Department of Geography and Geospatial Information Science University of Illinois at Urbana-Champaign

> ACES Workshop 2023 July 15th, 2023

Hands-On: CyberGISX

Please sign up for a CyberGISX account if you have not already done so: https://cybergisxhub.cigi.illinois.edu/

Motivation

- Geospatial discovery and innovation are increasingly computation and data intensive
- Personal computing environments are limited to resolve such computational intensity
- High-performance computing (HPC) environments are needed to enable computation- and data-intensive geospatial scientific workflows

But ...

The learning curve to access and use HPC is very steep!

Examples

Spatial Accessibility Calculation

Estimate Height Above Nearest Drainage

WRFHydro Model

What is CyberGIS-Compute?

- Simplify access to HPC
- Bridge the gap between interactive computing environments (e.g. CyberGIS-Jupyter) and HPC
- Enable computation- and data-intensive geospatial workflows

User Interface

I

CyberGIS Center for Advanced Digital and Spatial Studies

Bridging Ease of Use with Powerful Computing

- Padmanabhan, A., Vandewalle, R.. C., Xiao, Z., Baig, F., Michels, A., Li, Z., and Wang, S. (2021) "CyberGIS-Compute for enabling computationally intensive geospatial research". In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Geospatial Data Access and Processing APIs, https://doi.org/10.1145/3486189.3490017.
- Yin, D., Liu, Y., Hu, H., Terstriep, J., Hong, X., Padmanabhan, A., and Wang, S. (2018) "CyberGIS-Jupyter for Reproducible and Scalable Geospatial Analytics". *Concurrency and Computation: Practice and Experience*. https://doi.org/10.1002/cpe.5040

Geospatial Middleware

A **scalable middleware framework** for enabling high-performance and dataintensive geospatial research and education

Key Components

- Core: middleware server that automates job submission to HPC
- **SDK**: interactive client for Jupyter Notebook with code-less UI support
- Contribution: developer API that enables workflow contribution with little to no modification of existing code

CyberGIS-Compute Core

CyberGIS-Compute SDK

Contribution

I

CyberGIS Center for Advanced Digital and Spatial Studies

CyberGIS-Compute Core Middleware

SDK: Client Package

- A Python-based Jupyter
 Notebook client that integrates
 CyberGIS-Compute Core
 functionalities into CyberGIS-Jupyter
- Provides seamless interaction with HPC
- Provides code-less interactive UI

https://cybergis.github.io/cybergis-compute-python-sdk/index.html

Large Datasets

Seamless Access to HPC

Containerization: Run code in familiar environments

Transparently interfaces with batch systems (e.g. Slurm):

Manage Slurm on behalf of developers

CyberGIS-Compute Contribute

CyberGIS-Compute Contribute allows users to **submit workflow code hosted on GitHub repositories** to be executed on HPC resources

Submissions are verified through a checking process

Provides configurations, system environment, and developer API

Git commit version lock for security

T Cyk

CyberGIS Center for Advanced Digital and Spatial Studies

Contribution Process

```
aithub.com
import json
import os
print('running main...\n')
print('./job.json\n')
job = json.load(open('./job.json',))
print('SLURM_NODEID\n')
print(os.environ['SLURM_NODEID'])
print('SLURM_PROCID\n')
print(os.environ['SLURM_PROCID'])
print('job_id')
print(os.environ['job_id'])
```


Hands-on Demo!

Comments / Questions?

Email:

fbaig@illinois.edu michels9@illinois.edu

Hands-On: CyberGISX

Please sign up for a CyberGISX account if you have not already done so: https://cybergisxhub.cigi.illinois.edu/

Hands-On Outline

- O. Getting everyone to https://cybergisx.cigi.illinois.edu
- 1. Very simple "hello world" job
- 2. More involved spatial accessibility application
- 3. Overview of how you can create your own models!

Future Work and Documentation

CyberGIS-Compute on ACES

We are currently working with ACES to get CyberGIS-Compute connected to ACES.

This will allow model developers to take advantage of the cutting-edge resources on ACES.

I

Simplified UI

We've received feedback that while the verbose UI is appreciated by model developers, it can confuse less technical users.

Our goal is to create a more streamlined and end-user oriented UI in addition to the existing one.

from cybergis_comput	ne_tilent impert CyberillSCompute
cybergis - Cyber6250	Compute(url="cgjoboup.cigi_llllineis.edu", isJupyter=frae, protocol="MTTP5", part=46), suffix="vd")
cybergis.shov_si()	
Job Configuration 1	Your Julis Status Download Juli Result Viour Julis
Welcome to	to CyberGIS-Compute
A scalable middleware	e thanework for enabling high-performance and disca-intensive geospatial research and education on CyberCiti-Jupyter
200 Templates: N	tello, sonti
helio, world Job Des	scription: none
keeling_community to	HPC Description none
Estimated Runtime:	unknown
Computing Res	Mounte
> Slurm Computi	ting Configurations
> Input Paramete	es .
necesse email on j	pilo tatusch exampregitimos edu
O receive entail on ji Submit Job	

Private Repos

Our codebase currently assumes that model repositories are public, but many researchers do not want to make their code public before publication acceptance.

We are testing a system to allow private Github repositories to run on CyberGIS-Compute.

CVMFS Integration

Our JupyterHubs (CyberGISX, CJW) currently depend on a software stack in CVMFS and we are working on a way to provide this environment on HPCs. This would provide a consistent software environment between JupyterHubs and HPCs. JupyterHubs

Cloud Backends

<u>Motivation</u>: Public datasets available on cloud storage (AWS Open Data, GCP Public Datasets etc.)

Move Computation to Data

Write code - Specify resources - run on cloud

Documentation

https://cybergis.github.io/cybergis-compute-python-sdk

Welcome to CyberGIS-Compute Python SDK's documentation!

Welcome to the documentation for CyberGIS-Compute! CyberGIS-Compute is designed to increase accessibility to super-computing resources by lowering the technical barriers, with a

Contents

Welcome to CyberGIS-Compute Python SDK's documentation!

Why use CyberGIS-Compute?

Demo Hello World

Table of Contents

Indices and tables

Model Gallery

We have a growing gallery of models that have utilized CyberGIS-Compute on our website.

Remote Sensing Image Fusion Model

Remote sensing data fusion (data_fusion) has been extensively studied to generate high spatial- and temporal- resolution data

products by integrating high-spatial-lowtemporal resolution (such as Landsat) and high-temporal-low-spatial-resolution images (such as MODIS). In this model, we utilize a robust hybrid deep learning model based on a super-resolution convolutional neural network (SRCNN) and long short-term memory (LSTM) for

spatiotemporal data fusion to integrate Landsat images with MODIS. The work uses code from the following paper:

Fangzheng Lyu, Zijun Yang, Zimo Xiao, Chunyuan Diao, Jinwoo Park, and Shaowen Wang. 2022. CyberGIS for Scalable Remote Sensing Data Fusion. In Practice and Experience in Advanced Research Computing (PEARC '22). Association for Computing Machinery, New York, NY, USA, Article 35, 1-4. https://doi.org/10.1145/3491418.3535145

- Github Repository: cybergis/data_fusion
- DOI for Paper: 10.1145/3491418.3535145
- Related Publication: A Robust Hybrid Deep Learning Model for Spatiotemporal Image Fusion

SUMMA

The Structure for Unifying Multiple Modeling Alternatives (SUMMA) hydrological modeling framework can be run with CyberGIS-Compute:

- Github Repository: cybergis/cybergis-compute-v2-summa
- Hydroshare Resource: Implementation of SUMMA model using CyberGIS-Compute V2
- Notebook on CyberGISXHub: Run ensemble SUMMA 3.0 model on HPC with CyberGIS-Compute Service on CJW

Core and SDK on Github

Links

Project Development doc:

http://github.com/cybergis/cybergis-compute-core

SDK doc:

http://github.com/cybergis/cybergis-compute-python-sdk

Hello World doc:

http://github.com/cybergis/cybergi s-compute-hello-world