
Introduction to
Charliecloud
Megan Phinney
mphinney@lanl.gov
Los Alamos National Laboratory

ACES Workshop 07/14/23

LA-UR 23-27202

2

Charliecloud Team (Current)

Reid Priedhorsky Jordan Ogas Shane Goff Megan Phinney

Lucas Caudill Layton McCafferty Hank Wikle Nick Volpe

Agenda

What are
containers?

What is
Charliecloud?

Fully unprivileged
build

01 02

03

3

What are
containers?

01

4

What if your thing is different?

● non-MPI simulations

Users need different software

5

Standard HPC software stacks have a specific purpose:

● Specifically: MPI-based physics simulations

Admins will install software for you

● IF there is enough demand
● Unusual software needs go

unmet

● Artificial intelligence
● Spicy software dependencies

User-defined software stacks

6

BYOS (bring your own software)

● Lets users install software of their own choice
● … up to and including a complete Linux distribution
● … and run it on compute resources they don’t own

But, possible problems include …

● Missing functionality
○ high speed network, accelerators, filesystems

● Performance
○ many opportunities for overhead

● Security problems
○ multiple root exploits

● Excessive complexity
○ See Spack

● a process
○ with its own view of kernel

resources
○ or perhaps a group of

processes sharing that view

A container is not
● a lightweight virtual machine

○ or something you boot
● a container image

○ filesystem tree
● something that requires a

specific tool
● the container runtime itself

○ ex. Docker

A container is

An image is: said filesystem tree

In whatever form it takes

7

Containers are mostly for abstraction/encapsulation.

● Moving between containers is explicitly supported.
● setns(2), /proc, etc.

Containers are just processes!

8

Privileged/setuid containers need more to be safe.

● SELinux/AppArmor, seccomp-bpf, etc.
● (this is hard! Lots of CVEs)

Unprivileged containers get kernel safety measures

● Lots of smart people’s time has gone into this
● You already trust the Linux kernel to keep unprivileged

processes secure. Keep doing that.

Linux namespaces
● Mount: filesystem tree and

mounts
● PID: process IDs
● UTS: host name
● Network: all other

network stuff
● IPC: System V and POSIX
● User: UID/GID/capabilities

02

04

01 cgroups: limit resource
consumption per
process

prctl(PR_SET_NO_NEW_PRIVS)03

seccomp(2)

SELinux, AppArmor, etc.05

Container Ingredients

privileged
need root to
create

unprivileged

9

Charliecloud privilege taxonomy
type namespace setup IDs in container examples

I mount privileged shares UID and GID
with host

Docker,
Singularity,

Podman

II mount +
privileged user privileged

arbitrary UIDs and
GIDs separate from

host

Singularity,
Podman
(rootless)

III mount +
unprivileged user unprivileged only 1 UID and 1 GID in

container Charliecloud

Priedhorsky, Canon, Randles, Younge. SC21. https://dx.doi.org/10.1145/3458817.3476187

10

https://dx.doi.org/10.1145/3458817.3476187

Distros have been working on bit-identical software builds for
years and (plot twist) it’s still not done

● e.g., timestamps get embedded everywhere

Reproducibility

11

Prescriptive builds do help.

● e.g., Dockerfile ⇒ standard

But unsolved challenges remain

● FROM centos:7 ⇒ maybe different tomorrow
● FROM centos:9f38484 ⇒ maybe gone tomorrow

What is
Charliecloud?

02

12

Charliecloud Philosophy

Treat containers as regular files

Examine/debug containers with
standard UNIX tools

Things should be explicit

1) transparent;
 not opaque

13

Charliecloud Philosophy

Everything is a user process

Implement the right features;
Minimize dependencies

Use mount and user namespaces
only

2) simple;
 not complex

Embrace UNIX: make each
program do one thing well

14

Charliecloud Philosophy

Don’t maintain a security
boundary

Stay unprivileged

Avoid responsibility

3) trust the
kernel

15

Charliecloud Components

ch-run(1)
C: container runtime

“glue”
POSIX sh: helper scripts for image
conversions & foreign builder wrapping

ch-image(1)
Python: Docker interpreter
a.k.a “builder”; push/pull/etc.

16

Performance impact: probably zero

17

SysBench HPCG

Torrez, Randles, Priedhorsky / CANOPIE Workshop @ SC, 2019

Fully
Unprivileged

Builds

03

18

● Users want more flexibility ⇒ containers

Basic Pitch

19

● The Key: Linux user namespaces
● New taxonomy of container privilege
● OSS implementations
- Fully-unprivileged Charliecloud

● Better workflow now & future is bright

● Container build needs root ⇒ HPC management mismatch

● Build on generic x86 VMs ⇒ HPC hardware mismatch
● Low-privilege containers ⇒ build directory on HPC

Container image workflow

build

build

build

test

test

test

run

run

run

laptop/workstation

CI/CD virtual machine

supercomputer

supercomputer

Old 1

Old 2

Solution?

root ⇒ easy

generic x86-64

uninformative

low privilege?

specific arch;
unprivileged

20

Charliecloud privilege taxonomy
type namespace setup IDs in container examples

I mount privileged shares UID and GID
with host

Docker,
Singularity,

Podman

II mount +
privileged user privileged

arbitrary UIDs and
GIDs separate from

host

Singularity,
Podman
(rootless)

III mount +
unprivileged user unprivileged only 1 UID and 1 GID in

container Charliecloud

Priedhorsky, Canon, Randles, Younge. SC21. https://dx.doi.org/10.1145/3458817.3476187

Only Type III containers are fully unprivileged throughout the container lifetime

21

https://dx.doi.org/10.1145/3458817.3476187

Build options

type namespace setup IDs in container approach

I mount privileged shares UID and GID
with host

sandboxed build
system

22

II mount +
privileged user privileged arbitrary UIDs and GIDs

separate from host

privileged helper
tools; careful
configuration

III mount +
unprivileged user unprivileged only 1 UID and 1 GID in

container
fakeroot(1)

wrapper

Charliecloud Components

ch-run(1)
C: container runtime

“glue”
POSIX sh: helper scripts for image
conversions & foreign builder wrapping

ch-image(1)
Python: Docker interpreter
a.k.a “builder”; push/pull/etc.

23

Type III

New Root Emulation Mode: seccomp

● Why do we need this?
○ We need to tell programs that we have

real root privileges even though we are
running as a normal user

● Uses the kernel’s seccomp(2) system call
filtering to intercept certain privileged
system calls, do absolutely nothing, and
return success to the program

24

New Root Emulation Mode: seccomp
● Advantages:

○ Simpler
○ Faster
○ Completely agnostic to libc
○ Mostly agnostic to distribution

● Disadvantages:
○ Lacks consistency

● Our previous root emulation mode, fakeroot, has
already been adopted by SingularityCE and Apptainer.

25

Type II vs. Type III build

type

Unprivileged? File
Ownership

ID
Management

on Host

Works with
Network FS

No
fakeroot(1)

Wrapper

II mostly preserved security boundary no yes

III fully flattened only 1 UID and 1
GID in container yes no

26

Type II implementations:

● add Type III
● fix shared FS (xattrs on NFS, Lustre, GPFS?)

Type III implementations:

● robustify fakeroot(1)
● use its ownership data

Distributions:

● add unprivileged mode to package managers

Linux kernel:

● move ID maps into kernel
● make supplemental groups mappable

Recommendations

27

Introduction to
Charliecloud
Megan Phinney
mphinney@lanl.gov
Los Alamos National Laboratory

ACES Workshop 07/14/23

LA-UR 23-27202

CREDITS: This presentation template was
created by Slidesgo, including icons by

Flaticon, infographics & images by Freepik

Thanks
Do you have any questions?

your email@freepik.com
+91 620 421 838

yourcompany.com

Please keep this slide for attribution

29

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/

