| ~. I
/ %) Los Alamos

[Introduction to

Charliecloud

Megan Phinney
mphinney@lanl.gov
Los Alamos National Laboratory

ACES Workshop 07/14/23

_LA-UR 23-27202

Charliecloud Team (Current)

Shane Goff

S

e

e
g%

Lucas Caudill Layton McCafferty Hank Wikle

BU%

|

-

Agenda

()1 What are

containers?

03 Fully unprivileged
build

02 What is

Charliecloud?

01 [
What are : ‘.

containers? |

N\

N 4

Users need different software

Standard HPC software stacks have a specific purpose:

e Specifically: MPI-based physics simulations

What if your thing is different?

e non-MPIl simulations
e Artificial intelligence
e Spicy software dependencies

Admins will install software for you

e |IF thereis enough demand
e Unusual software needs go
unmet

User-defined software stacks

BYOS (bring your own software)

e Lets users install software of their own choice
e ..Uptoandincluding a complete Linux distribution
e ..andrun it on compute resources they don't own

But, possible problems include ...

e Missing functionality
o high speed network, accelerators, filesystems

e Performance
o many opportunities for overhead

e Security problems

o multiple root exploits
e Excessive complexity

o See Spack

yd

A container is not A container is
e a lightweight virtual machine ® Qa process
o orsomething you boot o with its own view of kernel
e a container image resources
o filesystem tree o or perhaps a group of
e something that requires a processes sharing that view

specific tool
e the container runtime itself
o ex. Docker

An image is: said filesysternr
i

In whatever form it tak

Containers are just processes!

Containers are mostly for abstraction/encapsulation.

e Moving between containers is explicitly supported.
e setns(2), /proc, etc.

Privileged/setuid containers need more to be safe.

e SELinux/AppArmor, seccomp-bpf, etc.
e (thisis hard! Lots of CVESs)

Unprivileged containers get kernel safety measures

e Lots of smart people’s time has gone into this
e You already trust the Linux kernel to keep unprivileged
processes secure. Keep doing that.

d 8

Container Ingredients

01

Linux namespaces

Mount: filesystem tree and)

mMmounts .
PID: process IDs privileged

need root to
UTS: host name >crea o

Network: all other
network stuff

IPC: System V and POSIX _/
User: UID/GID/ca pabilities} unprivileged

02
03
04
05

cgroups: limit resource
consumption per
process

prctL(PR_SET_NO_NEW_PRIVS)

seccomp(2)

SELinux, AppArmor, etc.

N

Charliecloud privilege taxonomy

namespace setup IDs in container examples
mount rivileged sheres LD ene G Sir?oﬁﬁerglt
P S with host 9 Y
Podman
arbitrary UIDs and Singularity,
mount + ..
. privileged GIDs separate from Podman
privileged user
host (rootless)
mount + unprivileged oy 1 UL ar)d LEiin Charliecloud
unprivileged user container

Priedhorsky, Canon, Randles, Younge. SC21. https://dx.doi.org/10.1145/3458817.3476187

N 4

https://dx.doi.org/10.1145/3458817.3476187

Reproducibility

Distros have been working on bit-identical software builds for
years and (plot twist) it's still not done

e e.g.,timestamps get embedded everywhere

Prescriptive builds do help.

e e.g., Dockerfile = standard

But unsolved challenges remain

e FROM centos:7 = maybe different tomorrow
e FROM centos:9f38484 = maybe gone tomorrow

W hat is
Charliecloud?

2

Charliecloud Philosophy

Treat containers as regular files

-I) tra nspare ﬂt; Examine/debug containers with
alels opaque standard UNIX tools

Things should be explicit

Charliecloud Philosophy

Everything is a user process
Implement the right features;
2) sim P | e; Minimize dependencies

ot complex
only

Embrace UNIX: make each
program do one thing well

Charliecloud Philosophy

Don’t maintain a security
boundary

3) trust the
kernel

Stay unprivileged

Avoid responsibility

Charliecloud Components

C: container runtime

ch-run(1)
@ . Python: Docker interpreter
ch-image(1)| aka “ouilder” push/pull/etc.
POSIX sh: helper scripts for image
11 | 1 .)))
glue conversions & foreign builder wrapping

6

Performance impact: probably zero

SysBench

100.1

100.0

99.9 -

99.8 -

time % of bare metal

99.7 |-

bare metal Charliecloud

Shifter

Singularity

Torrez, Randles, Priedhorsky / CANOPIE Workshop @ SC, 2019

HPCG

FLOPS % of bare metal

110

105

100

95

90

1 2 4 8 16 32
node count

FLOPS % of bare metal

102

101

100

99

98

97

96

—— bare metal R 2=

| —=— Charliecloud -

—e— Shifter

| —— Singularity

1 | 1 1 | | | | | |

1 2 4 8 16 32 64 128 256 512

node count

y4 .
/ 17

03
Fully
Unprivileged

\ Builds

A

Basic Pitch

e Users want more flexibility = containers

e Container build needs root = HPC management mismatch
e Build on generic x86 VMs = HPC hardware mismatch

e Low-privilege containers = build directory on HPC

e The Key: Linux user namespaces P

e New taxonomy of container privilege
OSS implementations
- Fully-unprivileged Charliecloud

e Better workflow now & future is bright

Container image workflow

root = easy

Old1

‘ generic x86-64

laptop/workstation supercomputer <

specific arch;
unprivileged

test H run }

uninformative

Oid 2

CI/CD virtual machine

test H run }

low privilege?

Solution?

‘.\

supercomputer

NI g I gy

P

20

Charliecloud privilege taxonomy

namespace setup IDs in container examples
mount rivileged sheres LD ene G Sir?oﬁﬁerglt
P S with host 9 Y
Podman
arbitrary UIDs and Singularity,
mount + ..
. privileged GIDs separate from Podman
privileged user
host (rootless)
mount + unprivileged oy 1 UL ar)d LEiin Charliecloud
unprivileged user container

Priedhorsky, Canon, Randles, Younge. SC21. https://dx.doi.org/10.1145/3458817.3476187

Only Type lll containers are fully unprivileged throughout the container lifetime

v 4

N -/ 21

https://dx.doi.org/10.1145/3458817.3476187

Build options

namespace setup IDs in container
mMount rivileged shares UID and GID
P 9 with host
mount + . arbitrary UIDs and GIDs
privileged

privileged user

separate from host

mount +
unprivileged user

unprivileged

only TUID and 1GID in
container

22

N\

Charliecloud Components

Type Il

<

ch-run(1)

1
000

ch-image(1)

Uglue"

C: container runtime

Python: Docker interpreter
a.k.a “builder”; push/pull/etc.

POSIX sh: helper scripts for image
conversions & foreign builder wrapping

23

New Root Emulation Mode: seccomp

e Why do we need this?
o We need to tell programs that we have

real root privileges even though we are
running as a normal user

e Usesthe kernel's seccomp(2) system call
filtering to intercept certain privileged
system calls, do absolutely nothing, and

return success to the pProgram

New Root Emulation Mode: seccomp \

e Advantages:
o Simpler
o Faster
o Completely agnostic to libc
o Mostly agnostic to distribution

e Disadvantages:
o Lacks consistency

e Our previous root emulation mode, fakeroot, has
already been adopted by SingularityCE and Apptainer.

25

yd N

Type II vs. Type III build \

. ID . No
Unprivileged? File : Management Works with fakeroot(1)
Ownership Network FS
on Host Wrapper
mostly preserved security boundary no yes

onlyTUID and 1

il Heittenese GID in container

yes no

/[

N 4 26

Recommendations
Type Il implementations:

e add Type Il
e fixshared FS (xattrs on NFS, Lustre, GPFS?)

Type lll implementations:

e robustify fakeroot(1)
e Uuse its ownership data

Distributions:
e add unprivileged mode to package managers
Linux kernel:

e move ID maps into kernel
e make supplemental groups mappable

27

1% Los Alamos

NATIONAL LABORATORY

[Introduction to

Charliecloud

s s Charliecloud

Los Alamos National Laboratory

ACES Workshop 07/14/23 /

LA‘ U R 23—27202 CREDITS: This presentation template was

g
000

created by Slidesgo, including icons by
Flaticon, infographics & images by Freepik

Thanks

Do you have any questions?
your email@freepik.com
+91 620 421 838
yourcompany.com

e

CREDITS: This presentation template was
created by Slidesgo, including icons by
Flaticon, infographics & images by Freepik

Please keep this slide for attribution

29

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/

