
© NEC Corporation 2023

NEC SX-Aurora TSUBASA

Tutorial for NEC Vector Engine
July 14, 2023

Presented by:

Raghunandan Mathur (raghunandan.mathur@necam.com)

mailto:raghunandan.mathur@necam.com

• This presentation is available on the path:

• The hands-on source codes are available on the path

• Copy the example codes to your user spaces using the following command

 …or ask our friends from Texas A&M how to do it using GUI.

/scratch/training/nec/hpc

Before we begin…

/scratch/training/nec/hpc/nec-aces-codes

$ cp –r /scratch/training/nec/hpc/nec-aces-codes ~

1. Introduction to Vector Architecture

2. SDK and compiler features

3. Vectorization on NEC Vector Engine

4. Demonstration of Examples

5. OpenMP and Automatic Thread Parallelization

6. MPI Parallelization

7. Case Study

8. Q & A

Table of Contents

Introduction to Vector Architecture

© NEC Corporation 20235

An overview of processor architectures

NEC
With Pipelining | Multiple pipes →

With Pipelining | Single pipe →

No Pipelining | Single pipe →

No Pipelining | Multiple pipes →

© NEC Corporation 20236

Scalar processing

◆Without pipelining + Single Pipe.

◆One instruction is executed at a time.

for (i = 0; i < 100; i++)
{
 c[i] = a[i] * b[i];
}

Sample Program

DO I = 1, 100
 C(I) = A(I) * B(I)
END DO

© NEC Corporation 20237

SIMD Processing (modern scalar)

◆Without Pipelining + Multiple Pipes

◆Only one instruction is executed at a time.

◆ Parallel execution via multiple pipes.

© NEC Corporation 20238

Vector Processing

◆With Pipelining + Single Pipe

◆ Execute instructions in parallel to hide latency.

© NEC Corporation 20239

NEC Vector Engine

◆With Pipelining + Multiple Pipes

◆ Execute instructions in parallel to hide latency.

◆ Parallel execution via multiple pipes.

© NEC Corporation 202310

◆ Scalar Approach

◆Vector Approach

Programmer’s approach

For all the data, execute:

→ read instruction

→ decode instruction

→ fetch some data

→ perform operation on data

→ store result

→ read vector instruction

→ decode vector instruction

→ fetch vectordata

→ perform operation on data

simultaneously

→ store vector results

“There is a grid point, particle, equation,
element,….
What am I going to do with it?”

“There is certain operation.To which grid point,
particle, equation, element,… am I going to apply
it simultaneously?”

Instead of constantly reading/decoding instructions and fetching data, a vector computer
reads one instruction and applies it to a set of vector data.

© NEC Corporation 202311

Vector Processor on PCIe Card
(High Memory Capacity & Bandwidth Processor)

◼ 8 cores per processor

◼ 1.53 TB/s memory bandwidth

◼ 48GB on-chip HBM2 memory

→ Very High Memory Bandwidth

◼ 2.45TF performance (double precision)

◼ Low power consumption of under 300W

→ Operational power consumption around

200W

◼ Standard programming with Fortran/C/C++

→ No Special Programming Model Required

© NEC Corporation 202312

SPU
Scalar Processing

Unit

◆ Dedicated pipelines

◼ Arithmetic operations (ALU pipe)

• C = A + B

• C = A – B

• C = A * B

◼ FMA (Fused Multiply-Add)

• D = A + B * C

◼ Division

• C = A / B

◼ Square root

• B = SQRT (A)

◼ …

◆ Other operations are combinations

of standard operations

◼ SIN, COS, TAN, ATAN, …

◼ A**B, EXP, LOG, …

◼ …

Core Architecture and Operations

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA
0VFMA
1VFMA
2ALU0

ALU1

DIV

VFMA0

VFMA1

VFMA2

ALU0

ALU1

DIV/SQRT1.53 TB/s
(per processor)
avg. 190GB/s

(per core)

400GB/s
(per core)

Single core

© NEC Corporation 202313

Vector Length of VE vs modern SIMD

Let’s do a quick hands-on!

© NEC Corporation 2023

Architecture of SX-Aurora TSUBASA

◼ SX-Aurora TSUBASA = VH + VE
◼ Linux + standard language (C/C++/Fortran/Python)
◼ Enjoy high performance with easy programming

Software
◼ Linux OS

◼ C/C++/Fortran/Python

◼ Automatic vectorization compiler

Interconnect

◼ InfiniBand for MPI

✓ VE-VE direct communication support

Hardware
◼ VH(Standard x86 server) + Vector Engine

Application

Vector

Engine(VE)

x86 server

(VH)

Linux OS

PCIe

SX-Aurora TSUBASA
Architecture

Easy

programming
(standard language)

Automatic

vectorization

compiler

Enjoy high

Performance!

© NEC Corporation 2023

Transparent execution

VE
VH

(x86)

$ vi sample.c

$ gcc sample.c

$./a.out

Hello World !

$

$ ncc sample.c

ncc: opt(1135): sample.c, line 10: Outer loop conditionally

executes inner loop.

ncc: vec(101): sample.c, line 13: Vectorized loop.

$./a.out

Hello World !

Program on VH

Compile using ncc

Execute on VE

Result shown on VH

Compiler message

./a.out

execute

result

NEC SDK and compiler features

© NEC Corporation 202318

NEC Compilers for Vector Engine

◆ NEC C/C++ Compiler for Vector Engine conforms to the following language standards:

◼ ISO/IEC 9899:2011 Programming languages - C

◼ ISO/IEC 14882:2014 Programming languages - C++

◼ ISO/IEC 14882:2017 Programming languages - C++

◼ ISO/IEC 14882:2020 Programming languages - C++ (partial – work in progress)

◆ NEC Fortran Compiler conforms to the following language standards.

◼ ISO/IEC 1539-1:2004 Programming languages – Fortran

◼ ISO/IEC 1539-1:2010 Programming languages – Fortran

◼ ISO/IEC 1539-1:2018 Programming languages – Fortran (partial – work in progress)

◆ NEC C/C++ and Fortran compilers conform to the following standards.

◼ OpenMP Version 4.5

◼ OpenMP Application Program Interface Version 5.0 (partial – work in progress)

◆ Major Features

◼ Automatic Vectorization

◼ Automatic Parallelization and OpenMP C/C++

◼ Automatic Inline Expansion

© NEC Corporation 2022

◆ Fortran

◼ Fortran 2003

◼ Fortran 2008

◼ Fortran 2018

◆ C/C++

◼ C11

◼ C++14 / C++17 / C++20

◆ Python

◼ NLCPy

◆ OpenMP

◼ Version 4.5

◼ Version 5.0

◆ Libraries

◼ glibc

◼ MPI version 3.1

◼ Numerical libraries : BLAS, FFT,

Lapack, Stencil, etc.

◼ AI libraries : Frovedis (Apache

Spark and Scikit-learn clone)

◆ Tools

◼ GNU profiler

◼ GNU debugger

◼ TAU tool

◼ NEC profilers : FtraceViewer,

PROGINF, vftrace

◆ Hybrid programming

◼ VE offloading

◼ Reverse offloading

◼ Hybrid MPI

◼ OpenMP target (coming soon)

Software

© NEC Corporation 202220

◆NLC is a collection of mathematical libraries that powerfully supports the

development of numerical simulation programs.

NEC Numerical Library Collection (NLC)

ASL Unified Interface

Fourier transforms and Random number generators

FFTW3 Interface

Interface library to use Fourier Transform functions of ASL

with FFTW (version 3.x) API

ASL

Scientific library with a wide variety of algorithms for

numerical/statistical calculations:

 Linear algebra, Fourier transforms, Spline functions,

 Special functions, Approximation and interpolation,

 Numerical differentials and integration, Roots of

 equations, Basic statistics, etc.

BLAS / CBLAS

Basic linear algebra subprograms

LAPACK

Linear algebra package

ScaLAPACK

Scalable linear algebra package for distributed

memory parallel programs

SBLAS

Sparse BLAS

HeteroSolver

Direct sparse solver

Stencil Code Accelerator

Stencil Code Acceleration (SCA)

© NEC Corporation 202321

Usage of the compilers
$ ncc -O3 a.c b.c … Compile and link C program

$ ncc -report-all -O3 a.c b.c … Compile and link C program

$ nfort –report-all -O3 a.f90 b.f90 … Compile and link Fortran program(a.f90 b.f90)

$ nc++ -O4 x.cpp y.cpp … Compile and link C++ program

High

Low

ncc C Compiler

nc++ C++ Compiler

nfort Fortran 2008 Compiler

nar xar Archiver

mpincc MPI C Compiler

mpinc++ MPI C++ Compiler

mpinfort MPI Fortran 2008 Compiler

-O4 … Automatic vectorization with the highest level optimization

-O3 … Automatic vectorization with high level optimization

-O2 … Automatic vectorization with default level optimization

-O1 … Automatic vectorization with optimization without side-effects

-O0 … No vectorization and optimization

Options to control the level of automatic

vectorization and optimization.

Compilers from the NEC SDK for the Vector Engine.

© NEC Corporation 202322

Example of Typical Compiler Option Specification

Compiling and linking with the default

vectorization and optimization.

Compiling and linking with the highest vectorization

and optimization.

Compiling and linking using OpenMP parallelization

with the advanced vectorization and optimization.

Compiling and linking using automatic inlining with

the highest vectorization and optimization.

Compiling and linking with generating debugging

information in DWARF without vectorization and

optimization.

Compiling and linking with generating debugging

information in DWARF with the default vectorization

and optimization.

Performing preprocessing only and outputting the

preprocessed text to the standard output.

Performing only grammar analysis.

$ nfort a.f90

$ nfort –O4 a.f90 b.f90

$ nfort –fopenmp –O3 a.f90 b.f90

$ nfort –O4 –finline-functions a.f90 b.f90

$ ncc –O0 -g a.c b.c

$ ncc –g a.c b.c

$ ncc –E a.c b.c

$ nc++ –fsyntax-only a.cpp b.cpp

© NEC Corporation 202323

Program Execution

Executing a compiled program.

Executing a program getting input file

and parameter from command line.

$ nfort a.f90 b.cf90

$./a.out

$./c.out < data2.in

$./b.out data1.in

Executing with redirecting an input file

instead of standard input file.

$ env VE_NODE_NUMBER=1 ./a.out Executing with specifying the index of VE.

Executing a compiled MPI program,

-- on a single VE card

-- on two VE cards

-- on eight VE cards

$ mpincc a.c b.c

$ mpirun –ve 0 –np 8 ./a.out

$ mpirun –ve 0-1 –np 16 ./a.out

$ mpirun –ve 0-7 –np 64 ./a.out

$ nfort –mparallel –O3 a.f90 b.f90

$ export OMP_NUM_THREADS=4

$./a.out

Executing a parallelized program with specifying the

number of threads.

Vectorization on NEC Vector Engine

© NEC Corporation 202325

◆An orderly arranged scalar data sequence such as a line, column, or diagonal of a

matrix is called vector data. Vectorization is the replacement of scalar instructions

with vector instructions.

Vectorization Features

A(1) = B(1) + C(1)
A(2) = B(2) + C(2)
A(3) = B(3) + C(3)
…
A(100)= B(100) + C(100) a[99] =

Execution image of scalar instructions

DO I = 1, 100
 A(I) = B(I) + C(I)
END DO

Execution image of vector instructions

b[99] c[99]+

a[0] = b[0] c[0]+

a[1] = b[1] c[1]+

…

Execute one

calculation 100

times

a[0]

a[1]

…

a[99]

b[0]

b[1]

…

b[99]

c[0]

c[1]

…

c[99]

＝ ＋

Execute 100

calculation at

once

At most 256

calculation

at once

◆An orderly arranged scalar data sequence such as a line, column, or diagonal of a

matrix is called vector data. Vectorization is the replacement of scalar instructions

with vector instructions.

A(100) =

Execution image of scalar instructions

Execution image of vector instructions

B(100) C(100)+

A(1) = B(1) C(1)+

A(2) = B(2) C(2)+

…

Execute one

calculation 100

times

A(1)

A(2)

…

A(100)

B(1)

B(2)

…

B(100)

C(1)

C(2)

…

C(100)

＝ ＋

Execute 100

calculation at

once

At most 256

calculation

at once

© NEC Corporation 202326

Order of Hardware Instructions

① VLoad $vr1, B[1:100]
② VLoad $vr2, C[1:100]
③ VAdd $vr3, $vr1, $vr2
④ VStore $vr3, A[1:100]

$vr1 $vr2

$vr3

+

① ②③④

① ②

③

④

Array “b” Array “c”

Array “a”

In Vector Engine, up to 256 array
elements can be collected into
vector register and calculation can
be executed at once.

In the case of a scalar machine, these four
instruction sequences must be repeated 100 times.

(memory) (memory)

(memory)

(vector register)(vector register)

(vector register)

1,2 … 100 1,2 … 100

2,4 … 200

A(1) = B(1) + C(1)
A(2) = B(2) + C(2)
…
A(100)= B(100) + C(100)

© NEC Corporation 202327

D

Vector Execution

A

32e

64e

8e

FMA x3

256e

Vector Length = 256e (32e x 8 cycle)
307.2GF = 32Flops/cycle x 2(FMA) x 3 x 1.6GHz

vector register
256e x 64
(128kB)

B

C

32e

for (i = 0; i < 256; i++)
{
 d[i] = a[i] * b[i] + c[i];
}

© NEC Corporation 202328

Order of instruction execution with time

e[99]+f[99]

e[0]+f[0]

e[1]+f[1]

e[2]+f[2]

……

Note that the order of addition has changed.
(“b[1]+c[1]” is added faster than “e[0]+f[0]”)

Execution image of scalar addition instruction

(when two instructions are simultaneously executed)

Execution time

b[0]+c[0]
e[0]+f[0]

Scalar instruction

Vector instruction

Execution image of vector addition instruction

Reduced execution time

b[1]+c[1]
e[1]+f[1]

b[2]+c[2]
e[2]+f[2]

b[99]+c[99]
e[99]+f[99]

………………………………

b[99]+c[99]

b[1]+c[1]

b[2]+c[2]

……

for (i = 0; i < 100; i++)
{
 a[i] = b[i] + c[i];
 d[i] = e[i] + f[i];
}

When the number of loop iterations

is large enough, vector instructions

can achieve maximum performance.

Scalar addition instruction is faster
when the number of iterations of
the loop is very small

b[0]+c[0]

© NEC Corporation 202329

Unvectorizable Dependencies

before update

The calculation order cannot be changed, when array elements

or variables which defined in the previous iteration are referred

in the later iteration.

for (i=2; i < n; i++)
 a[i+1] = a[i] * b[i] + c[i];

Example 1

Unvectorizable, because the updated “a”

value cannot be referenced.

Vectorizable, because the order of calculation

does not change.

for (i=2; i < n; i++)
 a[i-1] = a[i] * b[i] + c[i];

Example 2

Notice that there is no dependency between loop iterations.

Calculation order in scalar Calculation order in vector

a[1] = a[2] * b[2] + c[2]; a[1] = a[2] * b[2] + c[2];

a[2] = a[3] * b[3] + c[3]; a[2] = a[3] * b[3] + c[3];

a[3] = a[4] * b[4] + c[4]; a[3] = a[4] * b[4] + c[4];

a[4] = a[5] * b[5] + c[5]; a[4] = a[5] * b[5] + c[5];

 : :

Calculation order in scalar Calculation order in vector

a[3] = a[2] * b[2] + c[2]; a[3] = a[2] * b[2] + c[2];

a[4] = a[3] * b[3] + c[3]; a[4] = a[3] * b[3] + c[3];

a[5] = a[4] * b[4] + c[4]; a[5] = a[4] * b[4] + c[4];

a[6] = a[5] * b[5] + c[5]; a[6] = a[5] * b[5] + c[5];

 : :

 a[n]：Updated “a” value

© NEC Corporation 202330

Unvectorizable Dependencies

for (i = 0; i < n; i++) {
 a[i] = s;
 s = b[i] + c[i];
}

Example 3

Unvectorizable, because the

reference of “S” appears before

its definition in a loop.

a[0] = s
for (i = 1; i < n; i++) {
 s = b[i-1] + c[i-1];
 a[i] = s;
}
s = b[n-1] + c[n-1];

It can be vectorized by

transforming the program.

Calculation order in scalar Calculation order in vector

a[0] = s ; a[0] = s ;

 s = b[0] + c[0] ; a[1] = s ;

 a[1] = s ; :

 s = b[1] + c[1] ; a[n-1] = s ;

 : s = b[0] + c[0] ;

 s = b[1] + c[1] ;

 :

Calculation order in scalar Calculation order in vector

a[0] = s ; a[0] = s ;
 s = b[0] + c[0] ; s = b[0] + c[0] ;
 a[1] = s ; s = b[1] + c[1] ;
 s = b[1] + c[1] ; :
 : a[1] = s ;
 a[2] = s ;
 :

© NEC Corporation 202331

Unvectorizable Dependencies

s = 1.0;
for (i=0; i < n; i++) {
 if (a[i] < 0.0)
 s = a[i];
 b[i] = s + c[i];
}

Example 4

Cannot be vectorized when a variable definition may not

be executed, even if its definition precedes its reference.

Can be vectorized, because there is always a definition of

“s” before its reference.

Example 5

for (i=0; i < n; i++) {
 if (a[i] < 0.0)
 s = a[i];
 else
 s = d[i];
 b[i] = s + c[i];
}

Example 6

for (i=1; i < n; i++) {
 a[i] = a[i+k] + b[i];
}

Cannot be vectorized. It is not possible to determine

whether there is a dependency or not, because the value

of “k” is unknown at compilation.

Unknown pattern in Example 1 or 2

© NEC Corporation 202332

Unvectorizable Dependencies

Example 7

Cannot be vectorized due to a function call within the

computational loop.

for (i=0; i < n; i++) {

 d[i] = a[i] * b[i] + c[i];

 printf (“Calculating”);

}

Cannot be vectorized originally due to a function call

within the computational loop.

Inline expansion of func() can however help vectorize this

loop easily and automatically.

for (i=0; i < n; i++) {

 b[i] = a[i] * func(a[i]);

}

…

double func (double x)

{

 return (x*x);

}

Example 8

Example 9

Can be vectorized despite a function call within the

computational loop because a few mathematical library

functions are tuned within the SDK.

for (i=0; i < n; i++) {

 b[i] = a[i] * sin(a[i]);

}

© NEC Corporation 202333

C/C++ Pointer and Vectorization

for (i = 2 ; i < n; i++) {
 *p = *q + *r;
 p++, q++, r++;
}

The pointer value is determined
when program is executed.

It is regarded as
unvectorizable dependency
and not vectorized to avoid
generating incorrect results,
unless it is clear that there are
no dependencies.

Specifying the compiler option
or #pragma to indicate that

there are no dependecies.

Pattern of
a[i-1]=a[i]+…

Ex 2: Can be vectorized when p=&a[1], q=&a[2]

+

Array “a” Array “b”

Array “a”

2,3 … 98 2,3 … 98

Pointer “q” Pointer “r”

Pointer “p”

+

Array “a” Array “b”

Array”a”

2,3 … 98 2,3 … 98

Pointer “q” Pointer “r”

Pointer ”p”

Ex 1: Cannot be vectorized when p = &a[3], q = &a[2]

Pattern of
a[i+1]=a[i]+…

© NEC Corporation 202334

Vectorization of IF Statement

Conditional branches (if statements) are also vectorized.

for (i = 0, i < 100; i++) {
 if (a[i] < b[i]) {
 a[i] = b[i] + c[i];
 }
}

mask[1] = a[1] < b[1]
mask[2] = a[2] < b[2]
 : : :
mask[100] = a[100] < b[100]

Execute with vector operations

if (mask[1] == true) a[1] = b[1] + c[1]
if (mask[2] == true) a[2] = b[2] + c[2]
 : : :
if (mask[100] == true) a[100] = b[100] + c[100]

© NEC Corporation 202336

◆ In order to be (automatically) vectorizable, a loop structure must fulfil certain criteria:

◼ Loop count needs to be known upon entering the loop

Vectorizable Loop Structure

! This vectorizes

DO i= 1, n

 do stuff

END DO

! This does not vectorize in general

DO WHILE (stuff to do)

 doing stuff

END DO

© NEC Corporation 202337

◆ In order to be (automatically) vectorizable, a loop structure must fulfil certain criteria:

◼ Loop count needs to be known upon entering the loop

◼No I/O operations inside the loop

Vectorizable Loop Structure

! This does not vectorize in general

DO WHILE (stuff to do)

 WRITE(*,*) stuff

END DO

© NEC Corporation 202338

◆ In order to be (automatically) vectorizable, a loop structure must fulfil certain criteria:

◼ Loop count needs to be known upon entering the loop

◼No I/O operations inside the loop

◼ Data needs to be parallel. Order of operation must not matter. (Exception for scatter instructions)

Vectorizable Loop Structure

NOTE: The compiler is able to build a slower pseudo vectorized version of this.

! This does not vectorize

DO WHILE (stuff to do)

 A(i) = A(i-1) + B(i)

END DO

! This vectorizes

DO i= 1, n

 A(i) = A(i) + B(i)

END DO

© NEC Corporation 202339

◆ In order to be (automatically) vectorizable, a loop structure must fulfil certain criteria:

◼ Loop count needs to be known upon entering the loop

◼No I/O operations inside the loop

◼ Data needs to be parallel. Order of operation must not matter. (Exception for scatter instructions)

◼No complicated function or routine calls (small functions/routines can be inlined automatically).

Vectorizable Loop Structure

! This does not vectorize

DO i= 1, n

 CALL very_long_routine(A(i))

END DO

! This vectorizes as the functions

! can be expanded inline

DO i= 1, n

 A(i) = inlinable_fkt(B(i))

 A(i) = SQRT(A(i))

END DO

© NEC Corporation 202340

◆ In order to be (automatically) vectorizable, a loop structure must fulfil certain criteria:

◼ Loop count needs to be known upon entering the loop

◼No I/O operations inside the loop

◼ Data needs to be parallel. Order of operation must not matter. (Exception for scatter instructions)

◼No complicated function or routine calls (small functions/routines can be inlined automatically).

◼No work on non vectorizabledata structures (e.g. strings)

Vectorizable Loop Structure

! This does not vectorize

DO i= 1, n

 A(i) = “Hello ”//”World !”

END DO

© NEC Corporation 202341

◆When the basic conditions for vectorization are not satisfied, the compiler

performs as much vectorization as possible by transforming the program and

using the special vector operations.

NEC Compiler and automatic vectorization

▌Statement Replacement

▌Loop Collapse

▌Loop Interchange

▌Partial Vectorization

▌Conditional Vectorization

▌Macro Operations

▌Outer Loop Vectorization

▌Loop Fusion

▌Inline Expansion

© NEC Corporation 202342

Statement Replacement

When this loop is vectorized, all

the value from b[0] to b[98] will

be 2.0. This loop do not satisfy

the vectorization conditions.

for (i = 0; i < 99; i++) {
 a[i] = 2.0;
 b[i] = a[i+1];
}

Source Program Transformation Image

The compiler replaces the

statements in the loop to satisfy

the vectorization conditions.

for (i = 0; i < 99; i++) {
 b[i] = a[i+1];
 a[i] = 2.0;
}

© NEC Corporation 202343

Loop Collapse

A loop collapse is effective in increasing the

loop iteration count and improving the

efficiency of vector instructions.

double a[M][N], b[M][N], c[M][N];
for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 a[i][j] = b[i][j] + c[i][j];

Source Program

Transformation Image

double a[M][N], b[M][N], c[M][N];
for (ij = 0; ij < M*N; ij++)
 a[0][ij] = b[0][ij] + c[0][ij];

© NEC Corporation 202344

Loop Interchange

The loop “for (i=0; i<N; i++)”
has unvectorizable dependency
about the array a.

for (j = 0; j < M; j++) {
 for (i = 0; i < N; i++) {
 a[i+1][j] = a[i][j] + b[i][j];
 }
}

a[1][0] = a[0][0] + b[0][0];
a[2][0] = a[1][0] + b[1][0];
a[3][0] = a[2][0] + b[2][0];
a[4][0] = a[3][0] + b[3][0];

a[1][0] = a[0][0] + b[0][0];
a[1][1] = a[0][1] + b[0][1];
a[1][2] = a[0][2] + b[0][2];
a[1][3] = a[0][3] + b[0][3];

Interchanging loops removes
unvectorizable dependency, and enable
the loop “for (j=0; j<M; j++)” to be

vectorized.

for (i = 0; i < N; i++) {
 for (j = 0; j < M; j++) {
 a[i+1][j] = a[i][j] + b[i][j];
 }
}

Source Program Transformation Image

© NEC Corporation 202345

Partial Vectorization

for (i = 0; i < N; i++) {
 x = a[i] + b[i];
 y = c[i] + d[i];
 func(x, y);
}

If a vectorizable part and an unvectorizable part exist together in a loop, the compiler divides

the loop into vectorizable and unvectorizable parts and vectorizes just the vectorizable part.

To do this, work vectors (the array wx and wy in above example) are generated if necessary.

Vectorizable

Unvectorizable

for (i = 0; i < N; i++) {
 wx[i] = a[i] + b[i];
 wy[i] = c[i] + d[i];
}
for (i = 0; i < N; i++) {
 func(wx[i], wy[i]);
}

Source Program Transformation Image

© NEC Corporation 202346

Conditional Vectorization

for (i = N; i < N+100; i++) {
 a[i] = a[i+k] + b[i];
}

if (k >= 0 || k < -99) {
 // Vectorized Code
}
else {
 // Unvectorized Code
}

The compiler generates a variety of codes for a loop, including vectorized codes and scalar

codes, as well as special codes and normal codes. The type of code is selected by run-time

testing at execution when conditional vectorization is performed.

(When k=-1)
 a[i] = a[i-1]+b[i];

(When k=-100)
 a[i] = a[i-100]+b[i];

N N+99…

a[i-100] a[i]

Source Program Transformation Image

© NEC Corporation 202347

Macro Operations

Although patterns like these do not satisfy the

vectorization conditions for definitions and references,

the compiler recognizes them to be special patterns

and performs vectorization by using proprietary vector

instructions.

Sum

Iteration

for (i = 0; i < N; i++)
 s = s + a[i];

for (i = 0; i < N; i++)
 a[i] = a[i-1]*b[i]+c[i];

for (i = 0; i < N; i++) {
 if (xmax < x[i])
 xmax = x[i];
}

Maximum or minimum values

© NEC Corporation 202348

Outer Loop Vectorization

The compiler basically vectorizes the innermost loop.

If a statement which is contained only in the outer loop exists, the compiler divides the loop

and vectorizes the divided outer loop.

In this case,
these loops are
collapsed.

for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++)
 a[i][j] = 0.0;
 b[i] = 1.0;
}

for (i = 0; i < N; i++) {
 for (j = 0; j <N; j++)
 a[i][j] = 0.0;
}
for (i = 0; i < N; i++)
 b[i] = 1.0;

Source Program Transformation Image

© NEC Corporation 202349

Loop Fusion

• The compiler fuses consecutive loops which have the same iteration count and vectorizes the

fused loop.

• If the same loop structure are continuous, they can be fused. But if there are the different

loop structures, and other sentences, they cannot be fused.

• In order to increase speed, it is better to make same loop structures continuous as much as

possible.

for (i = 0; i < N; i++)
 a[i] = b[i] + c[i];
for (j = 0; j < N; j++)
 d[j] = e[j] * f[j];

for (i = 0; i < N; i++) {
 a[i] = b[i] + c[i];
 d[i] = e[i] * f[i];
}

Source Program Transformation Image

© NEC Corporation 202350

Vectorization with Inlining

When the -finline-functions option is specified, the compiler expand the function directory

at the point of calling it if possible. If the function is called in a loop, the compiler tries to

vectorize the loop after inlining the function.

for (i = 0; i < N; i++) {
 b[i] = func(a[i]);
 c[i] = b[i];
}
…
double func(double x)
{
 return x*x;
}

for (i = 0; i < N; i++) {
 b[i] = a[i] * a[i];
 c[i] = b[i];
}
…
double func(double x)
{
 return x*x;
}

Source Program Transformation Image

© NEC Corporation 202351

Diagnostic Messages

$ ncc –fdiag-vector=2 abc.c
…
ncc: vec(103): abc.c, line 1181: Unvectorized loop.
ncc: vec(113): abc.c, line 1181: Unvectorizable dependency is assumed.: *(p)
ncc: vec(102): abc.c, line 1234: Partially vectorized loop.
ncc: vec(101): abc.c, line 1485: Vectorized loop.
…
$ ncc –report-diagnostics abc.c
…
$ less abc.L
FILE NAME: abc.c
…
FUNCTION NAME: func
DIAGNOSTIC LIST

 LINE DIAGNOSTIC MESSAGE

 1181 vec(103): Unvectorized loop.
 1181 vec(113): Unvectorizable dependency is assumed.: *(p)
 1234 vec(102): Partially vectorized loop.
 1485 vec(101): Vectorized loop.
…

▌You can check the vectorization status from output messages and lists of the compiler.

⚫Standard error … -fdiag-vector=2 (detail)

⚫Outputs diagnostic list … -report-diagnostics

List file name is "source file name".L

A message indicating that pointer p
is considered to have a dependency
that cannot be vectorized and has
not been vectorized

© NEC Corporation 202352

Format List notations

Loop Mark Line Mark

 --------- ---------

 C - Conditionally Vectorized C - Vector Scatter

 P - Parallelized F - Fused-multiply-add

 S - Partially Vectorized G - Vector Gather

 U - Unrolled I - Inlined

 V - Vectorized M - Vector Matrix Multiply

 W - Collapsed and Vectorized R - Retain

 Y - Parallelized and Vectorized V - Vreg

 X - Interchanged and Vectorized

 + - Not Vectorized

 * - Expanded

+------> for (j=0; j<n; j++) {

|V-----> for (i=0; i<m; i++) {

|| idx = j*m+i;

|| F D[idx] = A[idx]+B[idx]*C[idx];

|V----- }

+------ }

W------> for (i = 0; i < n; i++) {

|*-----> for (j = 0; j < m; j++) {

|| :

|| :

|*----- }

W------ }

$ ncc –report-format abc.c

P------> for (j=0; j<n; j++) {

|V-----> for (i=0; i<m; i++) {

|| :

|| :

|V----- }

P------ }

Performance Analysis Tools

© NEC Corporation 202354

◆ PROGINF

◼Performance information of the whole program.

◼The overhead to obtain the performance information is low.

◆ FTRACE

◼Performance information of each function.

◼It is necessary to re-compile and re-link the program.

◼When frequencies for function calls high, the overhead to get performance

information and the execution time may increase.

Performance Information of Vector Engine

© NEC Corporation 202355

PROGINF
Performance information of the whole program

Time information

Number of instruction executions

Vectorization, memory and
parallelization information

$ ncc –O4 a.c b.c c.c
$ ls a.out
a.out
$ export VE_PROGINF=DETAIL
$./a.out
 ******** Program Information ********
 Real Time (sec) : 11.329254
 User Time (sec) : 11.323691
 Vector Time (sec) : 11.012581
 Inst. Count : 6206113403
 V. Inst. Count : 2653887022
 V. Element Count : 619700067996
 V. Load Element Count : 53789940198
 FLOP count : 576929115066
 MOPS : 73492.138481
 MOPS (Real) : 73417.293683
 MFLOPS : 50976.512081
 MFLOPS (Real) : 50924.597321
 A. V. Length : 233.506575
 V. Op. Ratio (%) : 99.572922
 L1 Cache Miss (sec) : 0.010847
 CPU Port Conf. (sec) : 0.000000
 V. Arith. Exec. (sec) : 8.406444
 V. Load Exec. (sec) : 1.384491
 VLD LLC Hit Element Ratio (%) : 100.000000
 Power Throttling (sec) : 0.000000
 Thermal Throttling (sec) : 0.000000
 Max Active Threads : 1
 Available CPU Cores : 8
 Average CPU Cores Used : 0.999509
 Memory Size Used (MB) : 204.000000

Set the environment variable
“VE_PROGINF” to “YES” or “DETAIL”
and run the executable file.

“YES” … Basic information.
 “DETAIL” … Basic and memory

 information.

© NEC Corporation 202356

FTRACE
Performance information of each function

$ ncc -ftrace a.c b.c c.c (Compile and link a program with –ftrace to an executable file)

$./a.out
$ ls ftrace.out
ftrace.out (At the end of execution, ftrace.out file is generated in a working directory)

$ ftrace (Type ftrace command and output analysis list to the standard output)

 FTRACE ANALYSIS LIST

Execution Date : Thu Mar 22 17:32:54 2018 JST
Total CPU Time : 0:00'11"163 (11.163 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 15000 4.762(42.7) 0.317 77117.2 62034.6 99.45 251.0 4.605 0.002 0.000 100.00 funcA
 15000 3.541(31.7) 0.236 73510.3 56944.5 99.46 216.0 3.554 0.000 0.000 100.00 funcB
 15000 2.726(24.4) 0.182 71930.2 27556.5 99.43 230.8 2.725 0.000 0.000 100.00 funcC
 1 0.134(1.2) 133.700 60368.8 35641.2 98.53 214.9 0.118 0.000 0.000 0.00 main
--
 45001 11.163(100.0) 0.248 74505.7 51683.9 99.44 233.5 11.002 0.002 0.000 100.00 total

$ ftrace -f ftrace.out.0.0 ftrace.out.0.1 ftrace.out.0.2 ftrace.out.0.3

$ ls ftrace.out.*
ftrace.out .0.0 ftrace.out.0.1 ftrace.out.0.2 ftrace.out.0.3

For an MPI program, multiple ftrace.out files are generated. Specify them by -f option.

Objectives of Program Tuning

© NEC Corporation 202359

◆Raising the Vectorization Ratio

◼ The vectorization ratio is the ratio of the portion processed by vector instructions in the whole program.

◼ The vectorization ratio can be improved by removing the cause of non-vectorization.

• Increase the part processed by vector instructions.

◆ Improving Vector Instruction Efficiency

◼ Increase the amount of data processed by one vector instruction.

• Make the iteration count of a loop (loop length) as long as possible.

◼ Avoid vectorization when the length of the loop is short.

◆ Improving Memory Access Efficiency

◼ Avoid using a list vector.

Objectives of Program Tuning

© NEC Corporation 202360

◆ The ratio of the part processed by vector instructions in whole program

◆ The vector operation ratio is used instead of the vectorization ratio

Vectorization Ratio or Vector Operation Ratio

Scalar execution

Vector execution

Execution time

of scalar part

Execution time of vectorizable part

executed by scalar instructions

Execution time

of scalar part

Execution time

of vector part

Ts

Ts×α

Tv

α: Vectorization ratio

Ts: Scalar execution time

Tv: Vector execution time

Vector

operation

ratio

Number of vector instruction

execution elements

Execution count of

all instructions

Number of vector instruction

execution elements
＋

= 100 ×
Execution count of

vector instructions
-

© NEC Corporation 202361

◆ To maximize the effect of vectorization, the loop iteration count should be made

as long as possible

◼ Increase the amount of data processed by one vector instruction.

Loop Iteration Count and Execution Time

Execution

Time

Loop

Iteration Count

When the loop is

not vectorized

When the loop is

vectorized

Reduced time

Crossover length

(= about 20-30)

The average number of

date processed by one

vector instruction.

The maximum number is

256.

Analyze

average vector length.

It is difficult to analyze

iteration count for each

loops.

Improving vector

instruction efficiency

© NEC Corporation 202362

◆ Finding the function whose execution time is long, vector operation ratio is law

and average vector length is short from the performance analysis information

◼ PROGINF

• Execution time, vector operation ratio and average vector length of the whole program.

◼ FTRACE

• Execution time, execution count, vector operation ratio and average vector length of each function.

◆ Finding unvectorized loops in the function from diagnostics for vectorization

◆ Improving vectorization by specifying compiler options and #pragma directives

Process of Tuning

© NEC Corporation 202363

◆ A.V.Length (Average vector length)

◼ Indicator of vector instruction efficiency.

◼ The longer, the better (Maximum length: 256).

◼ If this value is short, the iteration count of the

vectorized loops is insufficient.

◆ V.Op.Ratio (Vector operation ratio)

◼ Ratio of data processed by vector instructions.

◼ The larger, the better (Maximum rate: 100).

◼ If this value is small, the number of vectorized

loops is small or there are few loops in the

program.

PROGINF

Sample Report

******** Program Information ********
 Real Time (sec) : 11.336602
 User Time (sec) : 11.330778
 Vector Time (sec) : 11.018179
 Inst. Count : 6206113403
 V. Inst. Count : 2653887022
 V. Element Count : 619700067996
 V. Load Element Count : 53789940198
 FLOP count : 576929115066
 MOPS : 73455.206067
 MOPS (Real) : 73370.001718
 MFLOPS : 50950.894570
 MFLOPS (Real) : 50891.794092
 A. V. Length : 233.506575
 V. Op. Ratio (%) : 99.572922
 L1 Cache Miss (sec) : 0.010855
 CPU Port Conf. (sec) : 0.000000
 V. Arith. Exec. (sec) : 8.410951
 V. Load Exec. (sec) : 1.386046
 VLD LLC Hit Element Ratio (%) : 100.000000
 Power Throttling (sec) : 0.000000
 Thermal Throttling (sec) : 0.000000
 Max Active Threads : 1
 Available CPU Cores : 8
 Average CPU Cores Used : 0.999486
 Memory Size Used (MB) : 204.000000

© NEC Corporation 202364

 FTRACE ANALYSIS LIST

Execution Date : Thu Mar 22 15:47:42 2018 JST
Total CPU Time : 0:00'11"168 (11.168 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 15000 4.767(42.7) 0.318 77030.2 61964.6 99.45 251.0 4.610 0.002 0.000 100.00 funcA
 15000 3.541(31.7) 0.236 73505.6 56940.8 99.46 216.0 3.555 0.000 0.000 100.00 funcB
 15000 2.726(24.4) 0.182 71930.1 27556.5 99.43 230.8 2.725 0.000 0.000 100.00 funcC
 1 0.134(1.2) 133.700 60368.9 35641.3 98.53 214.9 0.118 0.000 0.000 0.00 main
--
 45001 11.168(100.0) 0.248 74468.3 51657.9 99.44 233.5 11.008 0.002 0.000 100.00 total

◆A feature used to obtain performance information of each function

◼ Focus on V.OP.RATIO (Vector operation ratio) and AVER.V.LEN (Average vector length) as well as PROGINF,

and analyze the performance of each function.

FTRACE

Debugging

© NEC Corporation 202366

Traceback Information

Traceback information

Occur “divide-by-zero”

Use traceback information

Advance-mode is off

Catch exception of “divide-by-zero”

Compile and link with –traceback

Specify where the exception occurs

Notice that divide-by-zero is occurring in
the 3rd line in the main.c file

$ ncc -traceback main.c
$ export VE_TRACEBACK=FULL
$ export VE_ADVANCEOFF=YES
$ export VE_FPE_ENABLE=DIV
$./a.out
Runtime Error: Divide by zero at 0x600000000cc0
[1] Called from 0x7f5ca0062f60
[2] Called from 0x600000000b70
Floating point exception
$ naddr2line –e a.out –a 0x600000000cc0
0x0000600000000cc0
/.../main.c:3

#include <stdio.h>
int main(void) {
 printf(“%f\n”,1.0/0.0);
}

Compile and link with –traceback.

Set the environment variable “VE_TRACEBACK”
to “FULL” or “ALL” at execution.

Set the environment variable “VE_FPE_ENABLE” to catch

arithmetic exceptions.

 “DIV” … Divide-by-zero exception
 “INV” … Invalid operation exception
 “DIV,INV” … Both exceptions

Note: “VE_FPE_ENABLE” can be set to other

values but traceback basically uses “DIV” or

“INV”.

© NEC Corporation 202367

Using GDB

$ ncc –O0 –g –c a.c
$ ncc –O4 –c b.c c.c
$ ncc a.o b.o c.o
$ gdb a.out
(gdb) break func
Breakpoint 1 at func
(gdb) run
Breakpoint 1 at func
(gdb) continue
...

Run GDB

Specify –g to the files including the functions which you want to debug, in order to minimize

performance degradation

Only a.c is compiled with -O0 –g

The others are compiled without –g

⚫When debugging without -O0, compiler optimization may delete or move code or variables, so the debugger

may not be able to reference variables or set breakpoints.

⚫The exception occurrence point output by traceback information can be incorrect by the advance control of

HW. The advance control can be stopped to set the environment variable VE_ADVANCEOFF=YES. The execution

time may increase substantially to stop the advance control. Please take care it.

© NEC Corporation 202368

Strace: Trace of system call

▌Arguments and return values of system calls are output

⚫You can check if the system library has been called properly.

⚫You should carefully select system calls to be traced by -e of strace, because the output would
be so many.

System call arguments System call return values

$ /opt/nec/ve/bin/strace ./a.out
...
write(2, "delt=0.0251953, TSTEP".., 27) = 27
open(“MULNET.DAT", O_WRONLY|O_CREAT|O_TRUNC, 0666)= 5
ioctl(5, TCGETA, 0x8000000CC0) Err#25 ENOTTY
fxstat(5, 0x8000000AB0) = 0
write(5, "1 2 66 65", 4095) = 4095
write(5, "343 342", 4096) = 4096
write(5, "603 602", 4096) = 4096
write(5, "863 862", 4094) = 4094
write(5, "1105 1104", 4095) = 4095
write(5, "1249 1313 1312", 4095) = 4095
write(5, "1456 1457 1521 1520", 4095) = 4095
write(5, "1727", 4095) = 4095
...

Hands-on Example : Memory Access

© NEC Corporation 202370

◆Vector processors have huge data

throughput.

◆Memory access performance depends

on the pattern:

1. Stride 1

Optimal memory access.

Memory Access in Vector Computers

© NEC Corporation 202371

◆Vector processors have huge data

throughput.

◆Memory access performance depends

on the pattern:

1. Stride 1

2. Strided

Not optimal due to partially used cache lines.

Memory Access in Vector Computers

© NEC Corporation 202372

◆Vector processors have huge data

throughput.

◆Memory access performance depends

on the pattern:

1. Stride 1

2. Strided

3. Mask

Not optimal as not every element of a cache line

is needed.

Memory Access in Vector Computers

Note that all elements are loaded into the
vector registers and operated on, but the
write back is only performed if the
condition applies.

© NEC Corporation 202373

◆Vector processors have huge data

throughput.

◆Memory access performance depends

on the pattern:

1. Stride 1

2. Strided

3. Mask

4. Gather

Insufficient due to random memory access,

potential bank conflicts, partially used cache

lines.

Memory Access in Vector Computers

© NEC Corporation 202374

◆Vector processors have huge data

throughput.

◆Memory access performance depends

on the pattern:

1. Stride 1

2. Strided

3. Mask

4. Gather

5. Scatter

Inefficient due to random memory access,

potential bank conflicts, partially used cache lines.

Memory Access in Vector Computers

© NEC Corporation 202375

◆Vector processors have huge data

throughput.

◆Memory access performance depends

on the pattern:

1. Stride 1

2. Strided

3. Mask

4. Gather

5. Scatter

6. Reduction

Not optimal due to condensation into partial sums

up to one value.

Memory Access in Vector Computers

Note that a reduction is usually executed
by accumulating partial sums/products/….

Hands-on Example: Loop Collapse

© NEC Corporation 202377

◆ Consider the following nested loop:

◆ Innermost Loop is automatically vectorized by the compiler:

 Let’s assume n = 16 ; m = 128

Collapsing – Increasing the Vector Length

DO j = 1, m

 DO i= 1, n

 A(i,j) = 2.0*A(i,j)

 END DO

END DO

13: +------> DO j = 1, m

14: |V-----> DO i= 1, n

15: || A(i,j) = 2.0*A(i,j)

16: |V----- END DO

17: +------ END DO

© NEC Corporation 202378

Collapsing – Increasing the Vector Length

Vector Registers

© NEC Corporation 202379

Collapsing – Increasing the Vector Length

Vector Registers

© NEC Corporation 202380

◆Memory Layout in Fortran

Collapsing – Increasing the Vector Length

Matrix Representation Actual Memory Layout

Matrix Address:
A(i,j)

Actual Address:
A(i,j) = LOC(A(1,1)) + (j-1)*n + i

A matrix of size (n,m) has the same memory layout as
A matrix of size (n*m,1)..!

© NEC Corporation 202381

◆ Consider the following nested loop:

◆ Innermost (only) loop is vectorized:

 Let’s assume n = 16 ; m = 128 → n*m = 2048

Collapsing – Increasing the Vector Length

DO i= 1, n*m

A(i,1) = 2.0*A(i,1)

END DO

21: V------> DO i = 1, n*m

22: | A(i,1) = 2.0*A(i,1)

23: V------ END DO

© NEC Corporation 202382

Collapsing – Increasing the Vector Length

DO i= 1, n*m ! 1-256

A(i,1) = 2.0*A(i,1)

END DO

Vector Registers

EXCLUSIVE ... V.OP AVER. VECTOR ... PROC.NAME

TIME[sec](%) ... RATIO V.LEN TIME ...

---------------... ------------------ ... ---------

0.154(74.9)... 60.10 16.0 0.145 ... nested

 0.020(9.8)... 94.80 256.0 0.018 ... collapsed

---------------... -------------------... ---------

Note: The compiler can and will collapse
loops on its own!

Note: This does not work with
bound checking enabled!
Note: Be careful with gaps in
memory!

Hands-on Example: Loop Unrolling

© NEC Corporation 202384

◆ Every A(i,j) depends on two in j

consecutive values of B.

◆ This generates two loading instructions

(B(i,j),B(i,j+1)) for one iteration of i.

◆ B(i,j+1) will again be loaded in the

next iteration of j, thus creating

unnecessary loads.

Unrolling – Balancing the number of loads

© NEC Corporation 202385

◆ Partially unrolling the j loop the loading

is improved.

◆ This generates three loading

instructions (B(i,j),B(i,j+1),B(i,j+2))

for two iterations of i.

◆ This is not generalized, as the

remainder due to the stride might be

untreated.

Unrolling – Balancing the number of loads

© NEC Corporation 202386

◆ Partially unrolling the j loop the loading is

improved.

◆ This generates five loading instructions

(B(i,j),B(i,j+1),B(i,j+2),B(i,j+3),B(i,j+4))

for four iterations of i.

◆ This is not generalized, as the remainder

due to the stride might be untreated.

Unrolling – Balancing the number of loads

© NEC Corporation 202387

◆ Utilizing the outerloop_unroll() directive

prevents mistakes and allows for more

flexibility.

◆ This generates five loading instructions

(B(i,j),B(i,j+1),B(i,j+2),B(i,j+3),B(i,j+4))

for four iterations of i.

◆ This automatically treats a possible

remainder correctly.

◆ Compiler can and will usually unroll by

itself with a length of 4. (-O3 optimization).

Unrolling – Balancing the number of loads

Program Tuning Techniques

© NEC Corporation 202389

◆ The compiler directive is to give the compiler the information that it cannot obtain

from source code analysis alone to further the effects of the vectorization and

parallelization, writing #pragma.

◼ The compiler directive format is as follows.

#pragma _NEC directive-name [clause]

◼Major vectorized compiler directives.

• vector/novector : Allows [Disallows] automatic vectorization of the following loop

• ivdep : Regards the unknown dependency as vectorizable dependency

 during the automatic vectorization.

Compiler Directives

#pragma _NEC ivdep
 for (i = 2 ; i < n; i++)

{
 *p = *q + *r;
 p++, q++, r++;
 }

• Specify the vectorization directive option just before the loop by

delimiting with the specified space.

• It works only for the loop immediately after the directive.

© NEC Corporation 202390

Dealing with Unvectorizable Dependencies

for (i=0; i<N; i++) {
 if (x[i] < s)
 t = x[i];
 else if (x[i] >= s)
 t = -x[i];
 y[i] = t;
}

ncc: vec(103): a.c, line 16: Unvectorized loop.
ncc: vec(113): a.c, line 16: Overhead of loop division is too large.
ncc: vec(121): a.c, line 18: Unvectorizable dependency.

Such messages may be displayed
to attempt partial vectorization.

Unvectorized Loop Vectorized Loop

It cannot be vectorized. Because
compiler cannot recognizes the
variable “t” is defined or not.

Modified so that variable “t” is always

defined.

for (i=0; i<N; i++) {
 if (a[i] < 0.0)
 s = s + b[i];
 else
 s = s + c[i];
}

Unvectorized Loop Vectorized Loop

Vectorization as a sum type macro
operation.

Sum type macro operation is
vectorized using special HW
instruction

ncc: vec(101): a.c, line 16: Vectorized loop.
ncc: vec(126): a.c, line 21: Idiom detected.: Sum.

<Diagnostic message after vectorization>

for (i=0; i<N; i++) {
 if (x[i] < s)
 t = x[i];
 else
 t = -x[i];
 y[i] = t;
}

for (i=0; i<N; i++) {
 if (a[i] < 0.0)
 t = b[i];
 else
 t = c[i];
 s = s + t;
}

Compiler cannot recognizes sum type macro

operation

Raising

Vectorization

Ratio

© NEC Corporation 202391

Dealing with Unvectorizable Dependencies

▌Specify “ivdep” if you know that there are no unvectorizable data dependencies in the loops, even when the

compiler assumed that some unvectorizable dependencies exit.

ncc: vec(103): vec_dep2.c, line 7: Unvectorized loop.
ncc: vec(113): vec_dep2.c, line 7: Overhead of loop division is too large.
ncc: vec(122): vec_dep2.c, line 8: Dependency unknown. Unvectorizable dependency is assumed.: a

#define N 1024
double a[N],b[N],c[N];
void func(int k, int n)
{
 int i;

 for (i=1; i < n; i++)
 a[i+k] = a[i] + b[i];
}

ncc: vec(101): a.c, line 7: Vectorized loop.

Unvectorized Loop Vectorized Loop

It is not vectorized because it is unknown
whether the pattern of a[i-1] = a [i] or
the pattern of a[i + 1] = a [i]

When it is clear that the pattern is a[i-
1] = a[i], specify “ivdep” to vectorized.

<Diagnostic message after vectorization>

#define N 1024
double a[N],b[N],c[N];
void func(int k, int n)
{
 int i;
#pragma _NEC ivdep
 for (i=1; i < n; i++)
 a[i+k] = a[i] + b[i];
}

Raising

Vectorization

Ratio

© NEC Corporation 202392

Dealing with Pointer Dependencies

▌Specify “ivdep” if you know that there are no unvectorizable data dependencies in the loops, even when the
compiler assumed that some unvectorizable dependencies exist.

ncc: vec(103): a.c, line 12: Unvectorized loop.
ncc: vec(122): a.c, line 13: Dependency unknown. Unvectorizable dependency is assumed.: *(p)

Even if “ivdep” is specified, the compiler ignores it and
does not vectorize the loop when there is a clearly
unvectorizable dependency.

There is no unvectorizable dependency between p[i]
and q[i] because it is an area secured separately by
malloc(3C), but it is not known in function “func ()”

It is clear to the programmer that there is no
unvectorizable dependency, so you can specify “ivdep”.

NOTE: Specifying ivdep may result in invalid results when there is a dependency that cannot be vectorized
in practice

Vectorized Loop

main() {
double *p = (double *) malloc(8*N);
double *q = (double *) malloc(8*N);
…
func(p,q);
…
}
void func(double *p, double *q) {
 …
#pragma _NEC ivdep
 for (int i = 0; i < n; i++) {
 p[i] = q[i];
 }
}

Raising

Vectorization

Ratio

© NEC Corporation 202394

Equality Operator in Loop-termination-expression
Raising

Vectorization

Ratio

▌When the equality operator (==) or the inequality operator (!=) appears in a loop-

termination-expression, it cannot be determined whether the expression becomes true
or not during the loop execution.

⚫Use the relational operators <, >, <= or >= in the loop-termination-expression to vectorize the

loop.

The condition is not satisfied when n is an
odd number

Fix to ”i <n”

C ++ iterator type array

Unvectorized Loop

Unvectorized Loop

Vectorized Loop

Vectorized Loop

double *first, *last, *p;
……
for (p=first; p < last; p++)
{
 ……
}

for (i=0; i < n; i+=2) {
 ……
}

for (i=0; i != n; i+=2) {
 ……
}

double *first, *last, *p;
……
for (p=first; p != last; p++)
{
 ……
}

© NEC Corporation 202395

Logical AND/OR Operator in Loop-termination-expression
Raising

Vectorization

Ratio

▌When a logical AND operator (&&) or a logical OR operator (||) appears in a loop-termination-expression, two
branches are generated for the expression and the loop cannot be vectorized.

⚫ Modify the source code so as to avoid using (&&) or (||) the loop-termination-expression.

⚫ Part of the loop-termination-expression is moved into the loop body to remove the branch from the loop-termination-
expression.

Processing of loop-termination-expression

i < n

p==last

Terminal

Terminal

Loop body

i < n

p!=last

Terminal

Terminal

Loop body

false

false

false

true

double func(double *first, double *last, double *a, int n)
{
 double *p = first;
 double sum = 0.0;
 /* Unvectorizable loop structure */
 for (int i = 0; i < n && p != last; i++, p++) {
 sum += a[i] * (*p);
 }
 return sum;
}

double func(double *first, double *last, double *a, int n)
{
 double *p = first;
 double sum = 0.0;
 /* Vectorizable */
 for (i = 0; i < n; i++, p++) {
 if (p == last) break;
 sum += a[i] * (*p);
 }
 return sum;
}

© NEC Corporation 202396

Inline Expansion: Improving Vectorization
Raising

Vectorization

Ratio

▌When a function call prevents vectorization, above messages are output

▌Try to inlining with either of the following

⚫Specify “-finline-functions” option

⚫Specified as inline function at function declaration

#include <math.h>
double fun(double x, double y)
{
 return sqrt(x)*y;
}
…
for (i=0; i<N; i++) { // Unvectorized
 a[i] = fun(b[i], c[i]) + d[i];
 }
…

<When specifying inline function>

$ ncc –finline-functions a.c

“double sqrt (double)” is vectorizable function,

so it does not prevent vectorization

ncc: vec(103): a.c, line 9: Unvectorized loop.
ncc: vec(110): a.c, line 10: Vectorization obstructive procedure reference.: fun

<When specifying compiler option>

#include <math.h>
inline double fun(double x, double y)
{
 return sqrt(x)*y;
}
…
for (i=0; i<N; i++)｛ // Vectorized
 a[i] = fun(b[i], c[i]) + d[i];
 }
…

© NEC Corporation 202397

Outer Loop Unrolling
Raising

Vectorization

Ratio

▌Outer loop unrolling will reduce the number of load and store operations in the inner loops.

⚫ Unrolling the outer loop when there are multiple loop nests reduces the number of loads and stores that use only the inner
loop's induction variable.

ncc: opt(1592): a.c, line 3: Outer loop unrolled inside inner loop.: I
ncc: vec(101): a.c, line 4: Vectorized loop.

<Message after outer loop unroll by “outerloop_unroll” directives>

Specifying “outerloop_unroll” directive or “-fouterloop-unroll” option shortens the loop length of the

outer loop (induction variable “i”) and reduces the number of vector loads of the array “c”.

#pragma _NEC outerloop_unroll(4)
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 a[i][j] = b[i][j] + c[j];
 }
}

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

a[i][j] = b[i][j] + c[j];
}

}

Program after unrolling the outer loop 4 times.

Insert outerloop_unroll(4) directive

for (int i = 0; i < (n%3); i++) {
 for (int j = 0; j < n; j++) {
 a[i][j] = b[i][j] + c[j];
 }
}

for (int i = (n%3); i < n; i++) {
 for (int j = 0; j < n; j++) {
 a[i][j] = b[i][j] + c[j];
 a[i+1][j] = b[i+1][j] + c[j];
 a[i+2][j] = b[i+2][j] + c[j];
 a[i+3][j] = b[i+3][j] + c[j];
 }
}

specify 2x times
unrolling in
parentheses. 4 times vector operations can be performed

per one vector load in array “c”

© NEC Corporation 202399

A Loop Contains an Array with a Vector Subscript Expression

ncc: vec(103): a.c, line 8: Vectorized loop.
ncc: vec(126): a.c, line 9: Idiom detected.: List Vector

▌Specifying ivdep for the list vector further improves performance

⚫List vector is an array with a vector subscript expression.

⚫When the same list vector appears on both the left and right sides of an assignment operator, it cannot be
vectorized because its dependency is unknown.

ncc: vec(101): a.c, line 8: Vectorized loop.

<Message after vectorization by ivdep>

Vectorized Loop (“list_vector” Directives) Vectorized Loop (“ivdev” Directives)

#pragma _NEC ivdep
for (i = 0; i < n; i++) {
 a[ix[i]] = a[ix[i]] + b[i];
}

#pragma _NEC list_vector
for (i=0; i < n; i++) {
 a[ix[i]] = a[ix[i]] + b[i];
}

If list_vector is specified, the loop can be vectorized.

If the same element of array “a” is not defined twice or more in the loop, in other words, if there are no duplicate values
in “ix[i]”, more efficient vector instructions can be generated by specifying ivdep instead of list_vector.

Raising

Vectorization

Ratio

OpenMP and Automatic Parallelization

© NEC Corporation 2023101

OpenMP Parallelization

◆ International standards of directives and libraries for shared memory parallel processing

◼ “NEC C/C++ Compiler for Vector Engine” supports some features up to “OpenMP Version 4.5”.

◆ Programming method

◼ The programmer extracts a set of loops and statements that can be executed in parallel, and specifies

OpenMP directives indicating how to parallelize them.

◼ The compiler modifies the program based on the instruction and inserts processing for parallel

processing control.

◼ Compile and link with “-fopenmp”.

◆ Feature

◼ Higher performance improvement than automatic parallelization is expected because the programmer

can select and specify the parallelization part.

◼ Easy to program because the compiler performs program transformation involving extraction of

parallelized part, barrier synchronization and shared attribute of variables.

$ ncc –fopenmp a.c b.c Specify “-fopenmp” also when linking

© NEC Corporation 2023102

Example: Writing in OpenMP C/C++

double sub (double *a, int n)
{
 int i, j;
 double b[n];
 double sum = 1.0;
#pragma omp parallel for
 for (j=0; j<n; j++) {
 for (i=0; i<n; i++)
 sum += a[j] + b[i];
 }
 …
 return sum;
}

for (j=0; j<n; j++) {
 for (i=0; i<n; i++)
 sum += a[j] + b[i];
 }

Search loops that can be execute in parallel

Insert OpenMP
directives $ ncc –fopenmp a.c

ncc: par(1801): ex1_omp.c, line 5: Parallel routine generated.: sub$1
ncc: par(1803): ex1_omp.c, line 6: Parallelized by "for".
ncc: vec(101): ex1_omp.c, line 7: Vectorized loop.

Specifying with“-fopenmp”. And OpenMP directives is enable.

Parallelize function “sub” of Example 1 with OpenMP C/C ++

The Compiler modifies the program so that
the compiler can execute in parallel.

#pragma omp parallel for

▌The OpenMP directives follows “#pragma omp” to specify the parallelization method.

parallel

Specify start of parallelization region

for

Specify parallelization of for loop

© NEC Corporation 2023103

Automatic Parallelization on NEC Compilers

▌Program to execute in parallel in multiple threads

⚫ Select loops and statements and extract code that can be execute in parallel.

⚫ Generate executable code to execute in parallel with automatic parallelization or OpenMP.

Remark: Other part of loop is regarded as impossible to execute in parallel.

double sub (double *a, int n)
{
 int i, j;
 double b[n];
 double sum = 1.0;

for (j=0; j<n; j++) {
 for (i=0; i<n; i++)
 sum += a[j] + b[i];
 }

 return sum;
}

Example 1: Parallelization by automatic parallelization

for (j=0; j<n; j++) {
 for (i=0; i<n; i++)
 sum += a[j] + b[i];
 }

$ ncc –mparallel a.c
ncc: par(1801): ex1.c, line 6: Parallel routine generated.: sub$1
ncc: par(1803): ex1.c, line 6: Parallelized by "for".
ncc: vec(101): ex1.c, line 7: Vectorized loop.

Specify “-mparallel” to enable automatic parallelization.

Extract as another function to
execute the loop in parallel.Vectorize the inner loop.

Search loops that can be execute in parallel.

© NEC Corporation 2023104

Automatic Parallelization

▌Compile and link with –mparallel.

⚫Compiler finds and parallelizes parallelizable loops and statements.

•Automatically select loops without factors inhibiting parallelization.

•Automatically select outermost loops in multiple loops.

–Innermost loops should be increased speed with vectorization.

▌Compiler directives to control automatic parallelization.

⚫Compiler directive format

#pragma _NEC directive-option

⚫Major directive options

• concurrent/noconcurrent … parallelize/not-parallelize a loop right after this.

• cncall … parallelize a loop including function calls.

Also specify -mparallel for linking.

In automatic parallelization, compiler does everything as a typical OpenMP program would do.

$ ncc –mparallel a.c b.c

© NEC Corporation 2023105

Parallelization Programming Available on Vector Engine

▌OpenMP C/C++

⚫ The programmer selects a set of loops and statement blocks that can be executed in parallel, and specifies OpenMP directives

indicating how to parallelize them.

⚫ The compiler transforms the program based on the instruction and inserts a directives for parallel processing control.

▌Automatic parallelization

⚫ The compiler selects loops and statement blocks that can be executed in parallel and transforms the program into parallel

processing control.

⚫ The compiler automatically performs all the work of loop detection and program modification and directives insertion of

"Example 1" on the previous page.

Programming method Select loops / blocks Insert directives
Program

modification
Difficulty

OpenMP C/C++

(-fopenmp)
○ ○ － High

Automatic parallelization

(-mparallel)
－ － － Low

Remark: Manual work may be needed at the time of tuning.

○ : Manual work is needed.
－ : Manual work is not needed because the compiler automatically executes it.

© NEC Corporation 2023106

Apply Both OpenMP and Automatic Parallelization

▌Compile and link with both –fopenmp and -mparallel.

⚫Automatic parallelization is applied to the loops outside of OpenMP parallel regions.

⚫ If you don’t want to apply automatic parallelization to a routine containing OpenMP directives,

 specify -mno-parallel-omp-routine.

$ ncc –fopenmp –mparallel a.c b.c

$ ncc –fopenmp –mparallel t.c
ncc: par(1801): t.c, line 7: Parallel routine generated.: sub$1
ncc: par(1803): t.c, line 7: Parallelized by "for".
ncc: par(1801): t.c, line 11: Parallel routine generated.: sub$2
ncc: vec(101): t.c, line 8: Vectorized loop.
ncc: par(1803): t.c, line 12: Parallelized by "for".
ncc: vec(101): t.c, line 13: Vectorized loop.

double sub (double *a, int n)
{
 int i, j;
 double b[n][n];
 double sum = 1.0;

 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 b[i][j] = i * j;

#pragma omp parallel for
 for (j=0; j<n; j++) {
 for (i=0; i<n; i++)
 sum += a[j] + b[i][j];
 }

 return sum;
}

Automatic parallelized

OpenMP parallelized

© NEC Corporation 2023107

FTRACE for parallelized programs

◆ Load balance in functions are shown in information for each thread.

Specify #pragma _NEC concurrent schedule(dynamic, 4) right before an outermost loop

Before :EXCLUSIVE TIME are ununiform for -thread0 to -thread3 of funcX$1.(Load imbalance)

After :EXCLUSIVE TIME are uniform for each threads and that of funcX is shorter(time for barrier sync and so

on reduced) although that of funcX$1 increases because of time to control threads.

REQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

60000 66.872(99.6) 1.115 93599.2 74318.7 99.52 248.5 64.077 1.418 0.000 100.00 funcX$1
15000 16.766(25.0) 1.118 92992.0 73842.7 99.52 248.5 16.022 0.409 0.000 100.00 -thread0
15000 16.697(24.9) 1.113 91671.0 72790.7 99.52 248.5 16.000 0.397 0.000 100.00 -thread1
15000 16.714(24.9) 1.114 94854.7 75312.8 99.52 248.5 16.040 0.305 0.000 100.00 -thread2
15000 16.695(24.9) 1.113 94880.7 75329.6 99.51 248.5 16.014 0.307 0.000 100.00 -thread3
15000 0.129(0.2) 0.009 1284.5 0.1 0.00 0.0 0.000 0.010 0.000 0.00 funcX

...
--
 79001 67.148(100.0) 0.850 93334.5 74082.8 99.51 248.5 64.192 1.430 0.000 100.00 total

REQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 60000 62.177(73.1) 1.036 100641.4 79931.0 99.55 248.5 62.134 0.023 0.000 100.00 funcX$1
 15000 4.467(5.3) 0.298 107076.2 83033.3 99.47 248.4 4.455 0.005 0.000 100.00 -thread0
 15000 11.552(13.6) 0.770 104082.7 82404.6 99.54 248.5 11.542 0.006 0.000 100.00 -thread1
 15000 19.000(22.3) 1.267 101390.4 80683.3 99.55 248.6 18.990 0.006 0.000 100.00 -thread2
 15000 27.157(31.9) 1.810 97595.1 77842.2 99.56 248.6 27.147 0.006 0.000 100.00 -thread3
 15000 22.711(26.7) 1.514 1426.9 0.0 0.00 0.0 0.000 0.015 0.000 0.00 funcX
...
--
 79001 85.034(100.0) 1.076 74062.7 58500.4 98.89 248.5 62.249 0.043 0.000 100.00 total

MPI Parallelization

© NEC Corporation 2023109

◆ It is possible to compile and link MPI programs with the MPI compilation

commands corresponding to each programing language.

◆Use the option –compiler to specify a specific version of the C/C++ or Fortran

compiler for compilation

Compiling and Linking MPI Programs

$ source /opt/nec/ve/mpi/x.x.x/bin/necmpivars.sh

$ mpincc a.c

$ mpinc++ a.cpp

$ mpinfort a.f90

$ mpinfort -compiler /opt/nec/ve/bin/nfort-5.0.0 program.f90

© NEC Corporation 2023110

◆ By using the NEC MPI/Scalar-Vector Hybrid, you can perform a communication among processes

on VH or scalar nodes and those on VE nodes

Compiling and Linking Hybrid MPI Programs

$ source /opt/nec/ve/mpi/x.x.x/bin/necmpivars.sh

$ mpincc a.c

$ mpinc++ a.cpp

$ mpinfort a.f90

(setup the GNU compiler (e.g., PATH, LD_LIBRARY_PATH)

$ mpincc -vh a.c

$ mpinc++ -vh a.cpp

$ mpinfort -vh a.f90

NEC Compiler:

GNU Compiler:

© NEC Corporation 2023111

◆ Using the NEC MPI compiler wrappers, it is easy to compile simple MPI code.

Compiling and Linking MPI Programs

$ mpincc –o mpi_VE mpi.c

© NEC Corporation 2023112

◆ We can use the same compiler wrappers to compile the program for the vector host.

Compiling and Linking MPI Programs

$ export NMPI_CC_H=gcc

$ mpincc –vh –o mpi_VH mpi.c

© NEC Corporation 2023113

◆ -np, -n, -c determine the number of processes to create, -v prints out process placement

◆ Output of the above execution command.

Processes are parallelized over 6 cores of the same Vector Engine card.

Executing the MPI Programs

$ mpirun –np 6 –v ./mpi_VE

© NEC Corporation 2023114

◆ -vennp, -ve_nnp –nnp_ve determine the number of processes per VE

◆ Output of the above execution command.

Processes are parallelized over 3 cores of two Vector Engine cards each.

Executing the MPI Programs

$ mpirun –ve 0-1 –vennp 3 ./mpi_VE

© NEC Corporation 2023115

◆ -vh executes the program on the VH. It needs to be compiled for the target architecture

◆ Output of the above execution command.

Processes are parallelized over 6 cores of the Vector Host CPU.

Executing the MPI Programs

$ mpirun –vh 0-1 –np 6 ./mpi_VH

© NEC Corporation 2023116

◆ -nnp, -ppn –npernode, -N determine the number of processes per VH

◆ Output of the above execution command.

Processes are parallelized across CPUs of two Vector Hosts over 3 cores of each host.

Executing the MPI Programs

$ mpirun –vh –nnp 3 ./mpi_VH

© NEC Corporation 2023117

◆ VE/VH hybrid execution is easily achieved by chaining VE and VH commands for the corresponding executables

◆ Output of the above execution command.

A hybrid execution over CPU and VE architectures under the same MPI execution.

Executing the MPI Programs

$ mpirun –vh –np 2 ./mpi_VH : \

 –ve 0-1 –vennp 1 ./mpi_VE : \

 –ve 2-3 –vennp 2 ./mpi_VE : \

 –vh –np 1 ./mpi_VH

© NEC Corporation 2023118

◆ Offload I/O processes on VH using Hybrid MPI and continue the computations on VE

P

P

I/O

P
VE

VE

VE

VE

VH

PCIe switch

I/O Process for I/O File system

I/O

P

Offload I/O using Hybrid MPI

© NEC Corporation 2023

MPI communication

◼ Direct communications between VEs (no x86 involved and RDMA)

◼ Hybrid mode with processes on host CPU and Vector Engine processors

VH
x86

VE VE
mem. mem.

mem.

PCIe

SW
IB

VH
x86

VE VE
mem. mem.

mem.

PCIe

SW
IB

Infiniband Network

X86
cluster

mem.

IB

© NEC Corporation 2023120

◆ Execution on one VE.

◼ Execution of an MPI program on VE#3 on local VH using 4 processes

◆ Execution on multiple VEs on a VH

◼ Execution of an MPI program on from VE#0 through VE#7 on local VH using 16 processes in total

 (2 processes per VE).

◆ Execution on multiple VEs on multiple VHs

◼ Execution of an MPI program on VE#0 and VE#1 on each of two VHs (host1 and host2), using 32 processes

in total (8 processes per VE).

◆ Hybrid Execution on a VH and on multiple VEs

◼ Hybrid Execution of vh.out on VH host1 using 8 processes and ve.out on VE#0 and VE#1 on VH host1 using

16 processes in total (8 processes per VE).

Running the MPI Programs

$ mpirun -ve 3 -np 4 ./ve.out

$ mpirun -ve 0-7 -np 16 ./ve.out

$ mpirun -hosts host1,host2 -ve 0-1 -np 32 ./ve.out

$ mpirun -vh -host host1 -np 8 vh.out : -host host1 -ve 0-1 -np 16 ./ve.out

© NEC Corporation 2023121

◆ MPI communication between GPU

cluster and Aurora cluster is also possible.

◆ Application performance is maximized by

allocating appropriate resources

(VH [CPU], VE and GPU), based on the

compute.

◆ By using Hybrid MPI, all computational

resources can be utilized even for hybrid

systems with a mix of different

architectures.

Hybrid MPI: GPGPU

Examples

© NEC Corporation 2023

NEC Optimized Quantum Espresso v7.1

◆ NEC SX-Aurora TSUBASA Optimized QE

▪ OSS code: Quantum ESPRESSO

▪ Quantum ESPRESSO is one of the major applications in materials science.

▪ QE is widely used as a first-principle calculation application

▪ This version can be downloaded from: GitHub - SX-Aurora/qe-ve: QuantumEspresso electronic

structure calculations and materials modeling optimized for SX-Aurora TSUBASA Vector Engine

◆ Download Quantum Espresso from:

https://www.quantum-espresso.org/ | Release package: qe-7.1-ReleasePack.tgz

◆ Use ELPA (Eigenvalue soLvers for Petaflop Applications)

 https://elpa.mpcdf.mpg.de

$ git clone https://github.com/SX-Aurora/qe-ve.git

$ wget https://www.quantum-espresso.org/rdm-download/488/v7-

1/468ef2db4d26294ab85c0d299d0dab3f/qe-7.1-ReleasePack.tar.gz

$ wget https://gitlab.mpcdf.mpg.de/elpa/elpa/-

/archive/new_release_2022.05.001/elpa-new_release_2022.05.001.tar.gz

https://github.com/SX-Aurora/qe-ve
https://github.com/SX-Aurora/qe-ve
https://www.quantum-espresso.org/
https://elpa.mpcdf.mpg.de/
https://github.com/SX-Aurora/qe-ve.git
https://www.quantum-espresso.org/rdm-download/488/v7-1/468ef2db4d26294ab85c0d299d0dab3f/qe-7.1-ReleasePack.tar.gz
https://www.quantum-espresso.org/rdm-download/488/v7-1/468ef2db4d26294ab85c0d299d0dab3f/qe-7.1-ReleasePack.tar.gz
https://gitlab.mpcdf.mpg.de/elpa/elpa/-/archive/new_release_2022.05.001/elpa-new_release_2022.05.001.tar.gz
https://gitlab.mpcdf.mpg.de/elpa/elpa/-/archive/new_release_2022.05.001/elpa-new_release_2022.05.001.tar.gz

© NEC Corporation 2023

NEC Optimized Quantum Espresso v7.1

◆ A naïve download script is available on:

◆ All packages can be downloaded with the following commands:

◆ Alternately, all packages have been downloaded and available on:

◆ Bring them to your user directory:

/scratch/training/nec/hpc/demo/download-packages.sh

$ cd $SCRATCH

$ mkdir nec-qe-demo

$ cd nec-qe-demo

$ cp /scratch/training/nec/hpc/demo/download-packages.sh .

$./download-packages.sh

/scratch/training/nec/hpc/demo/packages

$ cd $SCRATCH

$ mkdir nec-qe-demo

$ cd nec-qe-demo

$ cp –r /scratch/training/nec/hpc/demo/packages/* .

© NEC Corporation 2023125

◆Setup ELPA library

$ tar -zxvf elpa-new_release_2022.05.001.tar.gz

$ mv elpa-new_release_2022.05.001 elpa

$ cd elpa

$ mkdir elpa-install

$ export ELPADIR=<current ELPA directory>/elpa-install (use `pwd` command to find the path)

$./autogen.sh

$./conf_ELPA.sh

$ make

$ make install

$ cp modules/*.mod private_modules/*.mod ${ELPADIR}/include/elpa-2022.05.001/modules

Steps to Build Quantum Espresso (pw.x)

© NEC Corporation 2023126

◆Build Quantum Espresso

Steps to Build Quantum Espresso (pw.x)

$ tar -zxvf qe-7.1-ReleasePack.tar.gz

$ mv build_qe-7.1.sh patch_qe-7.1 qe-7.1/

$ cd qe-7.1/external/

$./initialize_external_repos.sh

$ cd ../

$ patch -p 1 < patch_qe-7.1

$./build_qe-7.1.sh

© NEC Corporation 2023127

◆ Benchmark datasets can be downloaded from github as:

 while the downloaded package has several datasets, we will use AUSURF112 for the demo.

◆ For ease, it has been downloaded and kept on the path:

◆ To run the benchmark, we need access to pw.x and a run script.

◆ Review the output files and logs in std:0.* files.

Steps to run Quantum Espresso (pw.x)

export VE_PROGINF=DETAIL

export MPIPROGINF=DETAIL

export MPISEPSELECT=4

export VE_TRACEBACK=FULL

export OMP_NUM_THREADS=1

mpirun -ve 0 -np 8 /opt/nec/ve/bin/mpisep.sh ./pw.x -npool 2 -nband 1 -ntg 1 -

ndiag 4 -input ausurf.in

$ git clone https://github.com/QEF/benchmarks

/scratch/training/nec/hpc/demo/packages/qe-ve/AUSURF112

https://github.com/QEF/benchmarks

© NEC Corporation 2023128

◆NEC Compiler user manuals

◼ C/C++ Compiler: https://www.hpc.nec/documents/sdk/pdfs/g2af01e-C++UsersGuide-019.pdf

◼ Fortran Compiler: https://www.hpc.nec/documents/sdk/pdfs/g2af02e-FortranUsersGuide-019.pdf

◆Detailed tuning guide for the Vector Engine

◼ https://www.hpc.nec/forums/topic?id=pwdcB9

◆Vectorization training with examples

◼ https://www.hpc.nec/forums/topic?id=p8kc9Z

NEC Vector Engine Knowledge base

https://www.hpc.nec/documents/sdk/pdfs/g2af01e-C++UsersGuide-019.pdf
https://www.hpc.nec/documents/sdk/pdfs/g2af02e-FortranUsersGuide-019.pdf
https://www.hpc.nec/forums/topic?id=pwdcB9
https://www.hpc.nec/forums/topic?id=p8kc9Z

	Title Slide_B
	Slide 1: NEC SX-Aurora TSUBASA Tutorial for NEC Vector Engine

	Table of Contents_B
	Slide 2
	Slide 3

	Body
	Slide 4: Introduction to Vector Architecture
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Let’s do a quick hands-on!
	Slide 15: Architecture of SX-Aurora TSUBASA
	Slide 16: Transparent execution
	Slide 17: NEC SDK and compiler features
	Slide 18
	Slide 19: Software
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Vectorization on NEC Vector Engine
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Performance Analysis Tools
	Slide 54
	Slide 55
	Slide 56
	Slide 58: Objectives of Program Tuning
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Debugging
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Hands-on Example : Memory Access
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Hands-on Example: Loop Collapse
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Hands-on Example: Loop Unrolling
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Program Tuning Techniques
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 99
	Slide 100: OpenMP and Automatic Parallelization
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: MPI Parallelization
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119: MPI communication
	Slide 120
	Slide 121
	Slide 122: Examples
	Slide 123: NEC Optimized Quantum Espresso v7.1
	Slide 124: NEC Optimized Quantum Espresso v7.1
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129

	Purpose_B
	Slide 130

