
Intel® oneAPI AI Analytics
Toolkit on Data Center
GPUs
Yuning Qiel
Orel Yehuda
Louie Tsai
Jeff Rodgers

@Intel AI Customer Engineering Team

2Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Agenda
• oneAPI - AI Analytics Toolkit
• Hands-on Environment Setup
• Intel Optimizations for PyTorch on XPU
• Intel Optimizations for TensorFlow on XPU
• Distributed DL on XPU
• Intel Distribution for Python (IDP) on XPU

3Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

OneAPI - AI Analytics Toolkit
Overview

4Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Modern Applications Demand Increased
Processing

1. Evans Data Global Development Survey Report 22.1, June 2022

Diverse accelerators needed to meet today’s performance requirements:
48% of developers target heterogeneous systems
that use more than one kind of processor or core1

CPU GPU FPGA

Developer Challenges: Multiple Architectures, Vendors, and Programming Models

Other Accelerators

Open, Standards-based, Multiarchitecture Programming

5Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Middleware & Frameworks

Application Workloads Need Diverse HardwareoneAPI Industry
Initiative
Break the Chains of Proprietary Lock-in

Direct Programming

Low-Level Hardware Interface (oneAPI Level Zero)

SYCL (C++)

oneAPI Industry Specification

The productive, smart path to freedom for accelerated
computing from the economic and technical burdens of
proprietary programming models

Visit oneapi.com for more details

CPU GPU FPGA

..

.Freedom to Make Your Best Choice
§ C++ programming model for multiple architectures and vendors

§ Cross-architecture code reuse for freedom from vendor lock-in

Realize all the Hardware Value
§ Performance across CPU, GPUs, FPGAs, and other accelerators
§ Expose and exploit cutting-edge features of the latest hardware

Develop & Deploy Software with Peace of Mind

§ Open industry standards provide a safe, clear path to the future
§ Interoperable with familiar languages and programming models

including Fortran, Python, OpenMP, and MPI

§ Powerful libraries for acceleration of domain-specific functions

API-Based Programming

Math Threading Parallel STL

Analytics/
ML DNN ML Comm

Video
Processing

Image
Processing

Signal
Processing

Ray Tracing

Volumetric
Rendering

Image
Denoise

Other Accelerators

oneapi.com

6

oneAPI Industry Momentum

ISVs & OSVs

End Users

OEMs & SIs

National Labs

Universities & Research Institutes CSPs & Frameworks

University
College
London

Indian
Institute of
Science
Bangalore

Indian Institute of
Science Education
& Research Pune

Indian Institutes
of Technology
Delhi / Kharagpur
/ Roorkee

Oak Ridge National
Laboratory

GeoEast

Verizon

These organizations support the oneAPI initiative for a single, unified programming model for cross-architecture development.
It does not indicate any agreement to purchase or use of Intel’s products. *Other names and brands may be claimed as the property of others.

WeBank

7Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Accelerating Choice with SYCL
Khronos Group Standard

§ Open, standards-based
§ Multiarchitecture performance

§ Freedom from vendor lock-in
§ Comparable performance to native CUDA on Nvidia

GPUs

§ Extension of widely used C++ language
§ Speed code migration via open source SYCLomatic

or Intel® DPC++ Compatibility Tool

Architectures Intel | Nvidia | AMD CPU/GPU | RISC-V | ARM Mali | PowerVR | Xilinx
Testing Date: Performance results are based on testing by Intel as of April 15, 2023 and may not reflect all publicly available updates.

Configuration Details and Workload Setup: Intel® Xeon® Platinum 8360Y CPU @ 2.4GHz, 2 socket, Hyper Thread On, Turbo On, 256GB Hynix DDR4-3200, ucode 0xd000363. GPU: Nvidia A100 PCIe 80GB GPU memory. Software: SYCL open source/CLANG 17.0.0, CUDA SDK 12.0 with NVIDIA-
NVCC 12.0.76, cuMath 12.0, cuDNN 12.0, Ubuntu 22.04.1. SYCL open source/CLANG compiler switches: -fscycl-targets=nvptx64-nvidia-cuda, NVIDIA NVCC compiler switches: -O3 –gencode arch=compute_80, code=sm_80. Represented workloads with Intel optimizations.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.

https://github.com/oneapi-src/SYCLomatic
http://www.intel.com/PerformanceIndex

8Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel® oneAPI Toolkits
A complete set of proven developer tools expanded from CPU to Accelerators

Intel® oneAPI Rendering Toolkit
Create performant, high-fidelity

visualization applications

Intel® oneAPI Tools for HPC
Deliver fast Fortran, OpenMP
& MPI applications that scale

Intel® oneAPI Tools for IoT
Build efficient, reliable solutions

that run at network’s edge

Intel® AI Analytics Toolkit
Accelerate machine learning & data science
pipelines end-to-end with optimized DL
frameworks & high-performing Python
libraries

Latest version available 2022.2

Intel® Distribution of
OpenVINO™ Toolkit
Deploy high performance inference &
applications from edge to cloud

A core set of high-performance libraries and tools for building C++, SYCL and Python applications

99

Intel® AI Analytics
Toolkit
Accelerate end-to-end AI and data analytics pipelines
with libraries optimized for Intel® architectures

Who needs this product?
Data scientists, AI researchers, ML and DL developers,
AI application developers

Top Features/Benefits

§ Deep learning performance for training and inference with
Intel optimized DL frameworks and tools

§ Drop-in acceleration for data analytics and machine learning
workflows with compute-intensive Python packages

Deep Learning

Intel® Optimization for TensorFlow

Intel® Optimization for PyTorch

Intel® Neural Compressor

Model Zoo for Intel® Architecture

Machine Learning

Intel® Extension for Scikit-learn Intel-optimized XGBoost

Get the Toolkit HERE or via these locations

Intel® DevCloudIntel Installer Docker Apt, Yum Conda

CPU GPU

Hardware support varies by individual tool. Architecture support will be expanded over time.

Back to Domain-specific Toolkits for Specialized Workloads

Intel® AI Analytics Toolkit

Intel-optimized Python

Numba Data Parallel
PythonNumPy SciPy Pandas

Data Analytics

Intel® Distribution of Modin OmniSci Backend

https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

11Software and Advanced Technologies Group | SATG/AIA

Intel Data Center GPU Architecture Terminology

Intel® Data Center GPU Flex Series

Intel® Data Center GPU Max Series

• Up to 408 MB
of L2 Cache

• AI-Boosting
Intel® Xe Matrix
Extensions (XM
X)

Intel Data Center GPU Max Series Products &
Form Factor

Xe configurations

DL Streamer

OpenVINO™ toolkit

TensorFlow* PyTorch* GStreamer

Middleware
Framework &

Runtimes

Open Visual Cloud

FFmpeg

Horizon

Xen App & Desktop

oneDNN

oneDAL

oneVPL

Intel® VTune™ Profiler

Intel Capture & Stream SDK

Virtualization

Kubernetes

Drivers

Level Zero DirectX & Indirect Display

OS
Linux

OpenCL

Vulkan / OpenGL

Media UMD

Kernel-based Virtual Machine (KVM)

Open Source Components Intel Software

AI Visual Inference† Media Delivery
Cloud Gaming Virtual Desktop

Infrastructure (VDI)†

VMWare

Android Gaming Windows Gaming†

Android Container-AIC

Intel Bridge Technology

Open WebRTC Toolkit Game Streaming SDK

OpenGL

Linux

Windows

3rd Party Closed Source

Note: oneDNN is the oneAPI Deep Neural Network Library. oneDAL is oneAPI Data Analyt ics Library. oneVPL is the oneAPI V ideo Processing Library. oneVPL, oneDNN, oneDAL, and Intel VTune Prof i ler are in the Intel® oneAPI Base Toolkit (individual tools
can be downloaded separately). Intel-opt im ized TensorFlow & PyTorch are in Intel® AI Analyt ics Toolkit . †Reflects capabil i t ies of Intel Data Center GPU Flex Series that w il l be available when product is fu l ly mature.

Open Source Software
created by Intel

Intel® XPU Manager

Software Stack for Intel® Data Center Flex Series GPU

Low-level
Libraries &

Tools

Orchestration

VMWare

17Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel ® XPU Manager Product Suite
•A free and open -source suite of solutions built
on top of the oneAPI Level Zero interface for
monitoring and managing Intel data center XPUs.
• Intel XPU System Management Interface (SMI)

• A command line utility for local XPU
management

• Intel XPU Manager
• A full -fledged solution with a daemon for

aggregate telemetry collection, RESTful APIs
for remote XPU management, and a local
library for 3rd party solutions integration,
and more.

https://github.com/intel/xpumanager

https://github.com/intel/xpumanager

18Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Environment Setup

19Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel® Developer Cloud
a service platform for developing and running workloads in Intel®-optimized deployment environments with the latest Intel®
processors

• Landing page :
• https://www.intel.com/content/www/us/en/developer/tools/devcloud/services.

html

• Please follow the instructions to get started :
http://tinyurl.com/ReadmeIDC

• https://github.com/bjodom/idc

20Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

TensorFlow and PyTorch Environments
• TensorFlow Environment

Activate the prepared tensorflow env
• $conda activate tensorflow_xpu

Launch an Interactive session to pvc node

• $srun -p pvc-shared --pty bash

• $source /opt/intel/oneapi/setvars.sh

• PyTorch Environment
Activate the prepared pytorch env
• $conda activate pytorch_xpu
Launch an Interactive session to pvc node
• $srun -p pvc-shared --pty bash
• $source /opt/intel/oneapi/setvars.sh
Pip install necessary python packages
• $python -m pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable-xpu
• $pip install torchvision –no-deps
• $pip install pillow –no-deps

• $ lspci | grep -i display

• Validation for both TensorFlow and PyTorch
• $wget https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/master/AI-and-

Analytics/version_check.py
• $python version_check.py

https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/master/AI-and-Analytics/version_check.py
https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/master/AI-and-Analytics/version_check.py

21Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Nodes and GPU cards How to login the node How to use one of 4
GPU card

User Assigned Index

Node 9. cards 0-3 srun -p pvc-shared -w idc-
beta-batch-pvc-node-9 --
pty /bin/bash

ZE_AFFINITY_MASK=0 0

ZE_AFFINITY_MASK=1 1

ZE_AFFINITY_MASK=2 2

ZE_AFFINITY_MASK=3 3

Node 10. cards 0-3 srun -p pvc-shared -w idc-
beta-batch-pvc-node-10 --
pty /bin/bash

ZE_AFFINITY_MASK=0 4

ZE_AFFINITY_MASK=1 5

ZE_AFFINITY_MASK=2 6

ZE_AFFINITY_MASK=3 7

Node 11. cards 0-3 srun -p pvc-shared -w idc-
beta-batch-pvc-node-11 --
pty /bin/bash

ZE_AFFINITY_MASK=0 8

ZE_AFFINITY_MASK=1 9

ZE_AFFINITY_MASK=2 10

ZE_AFFINITY_MASK=3 11

Node 12. cards 0-3 srun -p pvc-shared -w idc-
beta-batch-pvc-node-12 --
pty /bin/bash

ZE_AFFINITY_MASK=0 12

ZE_AFFINITY_MASK=1 13

ZE_AFFINITY_MASK=2 14

ZE_AFFINITY_MASK=3 15

28Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel Optimizations for PyTorch
on XPU

29Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel® Optimization for PyTorch

oneDNN oneCCL

PyTorch Intel® Extension for PyTorch*

LIBRARIES

FRAMEWORKS

ECOSYSTEM torchvision TorchServe Hugging Face PyTorch
Lightning

…

Other names and brands may be claimed as the property of others

30Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Major Optimization Methodologies

Operator Optimization

• Vectorization
• Parallelization
• Memory Layout
• Low Precision

Graph Optimization

• Operator fusion
• Constant folding

Runtime Configuration

• Customize execution

• Enabled functionality and performance optimizations on Intel GPUs.
• Additional performance boost and early adoption of aggressive optimizations through

Intel® Extension for PyTorch*

31Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Overview of Intel® Extension for PyTorch*
• Eager Mode (Default)

• Focus on operators
• For development and debugging

• Graph Mode (TorchScript)
• Fuse operators and use constant folding to

modify and merge the model structure to
reduce time loss on invalid operations

• For deployment
• To switch to graph mode use TorchScript:

torch.jit.trace() or torch.jit.script()
• oneDNN available in both PyTorch and IPEX
• AMX automatically enabled with oneDNN v2.6 and

newer.
• Loaded dynamically in Python* script
• Dynamically linked in CPP executables

Documentation (XPU)
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/index.htmlf

GitHub
https://github.com/intel/intel-extension-for-pytorch

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/index.html
https://github.com/intel/intel-extension-for-pytorch

32Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Memory Layout

• Used mainly in image workloads
• NCHW (PyTorch default)

• torch.contiguous_format

• NHWC (IPEX only default 1.13+)
• torch.channels_last
• NHWC format yields higher

performance on Intel® hardware

0 1

2 3

36Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

PyTorch to IPEX – Getting Started

• Import Intel® Extension for PyTorch* package

• Set model and data to xpu (or 'xpu:id')
• model.to('xpu')
• data.to('xpu')

• torch.xpu.optimize() is an alternative of
ipex.optimize() in Intel® Extension for PyTorch*,
to provide identical usage for XPU device only

• Code sample can be found
here: https://intel.github.io/intel-extension-for-
pytorch/xpu/latest/tutorials/examples.html

GPU FP32 Inference Example

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html

37Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Enable Float32 using IPEX

• ipex.optimize function applies optimizations against the model object, as
well as an optimizer object.

• In function, set dtype parameter to customize data type

38Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Low-precision Optimization – BF16

S E E E E E E E E M

S E E E E E E E E M M M M M M M

FP32

BF16

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

8 bits 23 bits

7 bits

BF16 has the same range as FP32 but less precision due to 16 less
mantissa bits. Running with 16 bits can give significant performance
speedup.

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

39Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Enable BFloat16 using IPEX
• Similar to Float32, the optimize function also works for BFloat16
• Set dtype parameter to torch.bfloat16 instead

• Auto Mixed Precision (AMP) needed to run in BFloat16

40Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Training with Intel® Extension for PyTorch

*The .to(“xpu”) is needed for GPU only
**Use torch.cpu.amp.autocast() for CPU
***Channels last format is automatic

41Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Inference with Intel® Extension for PyTorch

Resnet50 BERT
*The .to(“xpu”) is needed for GPU only
**Use torch.cpu.amp.autocast() for CPU
***Channels last format is automatic

42Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Low-precision Optimization – INT8
• What is Quantization?

• An approximation method
• The process of mapping values from a large set (e.g.

continuous, FP64/FP32) to those with smaller set (e.g.
countable, BF16, INT8)

• Why Quantization?
• Significant performance increase with similar accuracy

S E E E E E E E E M

S M M M M M M M

FP32

INT8

8 bits 23 bits

7 bits

• How to Quantize?
• PyTorch quantization
• IPEX quantization (with or w/o INC integration)
• Inter Neural Compressor (INC)

43Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Static vs Dynamic Quantization

• Static (Preferred)
• Quantizes weights and activations of model
• Fuses activations into preceding layers
• Requires calibration dataset to determine optimal quantization parameters for activations
• Used when both memory bandwidth and compute savings are important
• Only works on inputs with fixed sizes; typically used for CNNs

• Dynamic
• Weights are quantized ahead of time, but activations are quantized during inference
• Used when model execution time is dominated by memory bandwidth
• Can work on inputs with variable sizes; typically used for LSTM and Transformer models with small

batch size

NOTE: Some models are not
traceable, and therefore cannot
be statically quantized.

44Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Quantization Workflow and API
Static Quantization: Dynamic Quantization:

45Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Quantization Workflow and API (GPU)
Static Quantization:
import Intel®_extension_for_pytorch

define the model
def MyModel(torch.nn.Module):
 …

construct the model
model = MyModel(…)
model = model.to(‘xpu’)
model = torch.jit.trace(model, input)
model.qconfig = torch.quantization.QConfig(…)
model = torch.quantization.quantize_jit.prepare_jit(model, {‘’: qconfig}, True)

for images in calibration_data_loader():
 images = images.to(‘xpu’)
 model(images)
model = torch.quantization.quantize_jit.convert_jit(model, True)

run the model
with torch.inference_mode():
 input = input. to(‘xpu’)
 output = model(input)

46Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

TorchScript and torch.compile()
• TorchScript

• Converts PyTorch model into a graph for faster execution
• torch.jit.trace() traces and records all operations in the computational graph; requires a sample

input
• torch.jit.script() parses the Python source code of the model and compiles the code into a graph;

sample input not required

• torch.compile() – in BETA
• Makes PyTorch code run faster by just-in-time (JIT)-compiling PyTorch code into optimized kernels

47Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

TorchScript
• A method to run PyTorch in graph mode
• Invoke script mode with torch.jit.trace (requires sample input) or
torch.jit.script

•torch.xpu.amp.autocast can be used with torch.jit.trace to
apply graph optimizations

48Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Hands-on Demo
• Examples: https://github.com/intel/intel-extension-for-pytorch/tree/xpu-

master/examples/gpu
• Steps

• git clone https://github.com/intel/intel-extension-for-pytorch.git
• cd intel-extension-for-pytorch
• git checkout xpu-master # must use this branch for GPUs
• cd examples/gpu # contains inference and training samples
• Navigate into inference or training
• Create a jupyter notebook (.ipynb) file and open it
• Run different cases by copy/pasting the code and note the runtime differences from the code changes. Be

sure to call torch.xpu.synchronize() before measuring time. This waits for all kernels to finish before
proceeding

https://github.com/intel/intel-extension-for-pytorch/tree/xpu-master/examples/gpu
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-master/examples/gpu

50Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Runtime Configuration for GPU

Launch Option
Default
Value Description

IPEX_VERBOSE 0 Verbose level in integer. Set to 1 to print verbose output for Intel® Extension for PyTorch* GPU
customized kernel. Set to other value is not supported so far.

IPEX_SIMPLE_TRACE OFF Simple trace functionality. If set to ON, enable simple trace for all operators. Set to other value is
not supported.

IPEX_TILE_AS_DEVICE ON
Device partition. If set to OFF, tile partition will be disabled and map device to physical device. Set
to other value is not supported.

IPEX_XPU_SYNC_MODE OFF Kernel Execution mode. If set to ON, use synchronized execution mode and perform blocking wait
for the completion of submitted kernel. Set to other value is not supported.

IPEX_FP32_MATH_MODE FP32

Floating-point math mode. Set to TF32 for using TF32 math mode, BF32 for using BF32 math
mode. Set to other value is not supported. Refer to https://github.com/oneapi-
src/oneDNN/tree/rfcs/rfcs/20210301-computation-datatype for the definition of TF32 and BF32
math mode.

52Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

OneDNN Verbose
• Generate oneDNN Verbose logs using guide and parser
• To enable verbosity, set environment variables:

• export DNNL_VERBOSE=1
• export DNNL_VERBOSE_TIMESTAMP=1

• Set a Python breakpoint RIGHT AFTER one iteration of training/inference

https://oneapi-src.github.io/oneDNN/dev_guide_verbose.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling

53Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

PyTorch to IPEX – Validating Output

55Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Getting Started with Model Zoo
• Model Zoo for Intel® Architecture: contains Intel optimizations for

running deep learning workloads on Intel® Xeon® Scalable processors
• GitHub: https://github.com/IntelAI/models

https://github.com/IntelAI/models

56Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

ImageNet Data Prep
• Download ImageNet2012 training and

validation sets
• Extract files from each tar file
• Place files into respective folder

• Run the valprep.sh script to organize validation data
• See script on left to prepare training data

• *NOTE: no need to run scripts. Pre-
processed dataset located here:

• /gpfs/jlse-fs0/projects/intel_anl_shared/imagenet

https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

57Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Model Zoo w/IPEX
• Resnet50v1_5 Inference README

• $git clone https://github.com/IntelAI/models.git

• Commands to run Resnet50v1.5 inference (with Dummy dataset)
• $cd models
• $mkdir output_resnet50v1_5_inference
• export OUTPUT_DIR=/home/uXXXXXX/models/output _resnet50v1_5_inference
• export PRECISION="int8"
• ./quickstart/image_recognition/pytorch/resnet50v1_5/inference/gpu/inference_block_format.sh

• Alternatively, run this script with input argument “inference”
• Copy modelzoo_resnet.sh into MODEL_DIR
• source modelzoo_resnet.sh inference
• *NOTE: this script will not be maintained

https://github.com/IntelAI/models/tree/master/quickstart/image_recognition/pytorch/resnet50v1_5/inference/gpu

58Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Model Zoo w/IPEX Output
• Inference (Results with ImageNet validation)

http://www.image-net.org/

59Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel Optimizations for
TensorFlow on XPU

60Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel® Extension for TensorFlow*
• Intel® Extension for TensorFlow* is a heterogeneous,

high performance deep learning extension plugin
based on TensorFlow PluggableDevice interface to
bring Intel XPU(GPU, CPU, etc) devices
into TensorFlow .

• Good performance using default ITEX setting with no
code change

• More performance optimizations with minor code
change using simple frontend Python API

• GitHub: https://github.com/intel/intel-extension-for-
tensorflow

https://github.com/tensorflow/community/blob/master/rfcs/20200624-pluggable-device-for-tensorflow.md
https://github.com/tensorflow/tensorflow
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/intel-extension-for-tensorflow

61Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel® Extension for TensorFlow* - GPU Features

• Features:
• Auto Mixed Precision (AMP)

• support of AMP with BFloat16 and Float16 operations

• Channels Last
• support of channels_last (NHWC) memory format

• DPC++ Extension
• mechanism to create operators with custom DPC++ kernels running on the XPU device

• Optimized Fusion
• support of SGD/AdamW fusion for both FP32 and BF16 precision

• a set of fusion patterns for inference

62Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Intel® Extension for TensorFlow* - Optimization
Methods

Operator
optimizations

Memory/data
layout

optimizations

Graph
optimizations Mixed Precision

63Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

HOWTO: Intel® Extension for TensorFlow*(GPU)

• No code changes, the default backend will be Intel GPU after installing
• intel-extension-for-tensorflow[gpu]

Or
import intel_extension_for_tensorflow as itex

#CPU, GPU or AUTO
backend = "GPU"
itex.set_backend(backend)

64Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

TensorFlow to ITEX – Getting Started

• The backend can be set to CPU, GPU or AUTO
using the set_backend API to run the workload
on desired hardware.

• Code sample can be
found here: https://github.com/intel/intel-extension-for-
tensorflow/blob/main/examples/quick_example.md

Setting Backend Example

import numpy as np
import tensorflow as tf
import intel_extension_for_tensorflow as itex

print(itex.__version__)

backend = "GPU" #CPU, GPU or AUTO
itex.set_backend(backend)

Conv + ReLU activation + Bias
N = 1
num_channel = 3
input_width, input_height = (5, 5)
filter_width, filter_height = (2, 2)

x = np.random.rand(N, input_width, input_height, num_channel).astype(np.float32)
weight = np.random.rand(filter_width, filter_height, num_channel, num_channel).astype(np.float32)
bias = np.random.rand(num_channel).astype(np.float32)

conv = tf.nn.conv2d(x, weight, strides=[1, 1, 1, 1], padding='SAME')
activation = tf.nn.relu(conv)
result = tf.nn.bias_add(activation, bias)

print(result)

https://github.com/intel/intel-extension-for-tensorflow/blob/main/examples/quick_example.md
https://github.com/intel/intel-extension-for-tensorflow/blob/main/examples/quick_example.md

65Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

ITEX – Verbose mode
• The output shows the oneDNN verbose

output process running on GPU.

• Export ONEDNN_VERBOSE=1

onednn_verbose,info,oneDNN v3.1 (commit e008c47c7f2e839ff64c206a21c82059a227717c)
onednn_verbose,info,cpu,runtime:DPC++e
onednn_verbose,info,cpu,isa:Intel 64
onednn_verbose,info,gpu,runtime:DPC++
onednn_verbose,info,cpu,engine,0,backend:OpenCL,name:Genuine Intel(R) CPU $0000%@,driver_version:2021.13.11
onednn_verbose,info,gpu,engine,0,backend:Level Zero,name:Intel(R) Graphics [0x020a],driver_version:1.1.20495
onednn_verbose,info,gpu,engine,1,backend:Level Zero,name:Intel(R) Graphics [0x020a],driver_version:1.1.20495
onednn_verbose,info,prim_template:operation,engine,primitive,implementation,prop_kind,memory_descriptors,attributes,auxiliary,p
roblem_desc,exec_time
onednn_verbose,info,gpu,binary_kernels:enabled
onednn_verbose,exec,gpu:18446744073709551615,reorder,ocl:ref:any,undef,src_f32::blocked:cdba:f0
dst_f32:p:blocked:Acdb16a:f0,,,3x3x2x2,1.42993
onednn_verbose,exec,gpu:18446744073709551615,convolution,ocl:gen9:blocked,forward_training,src_f32::blocked:acdb:f0
wei_f32:p:blocked:Acdb16a:f0 bia_undef::undef::f0 dst_f32::blocked:acdb:f0,attr-scratchpad:user
,alg:convolution_direct,mb1_ic3oc3_ih5oh5kh2sh1dh0ph0_iw5ow5kw2sw1dw0pw0,0.352051
onednn_verbose,exec,gpu:18446744073709551615,eltwise,ocl:ref:any,forward_training,data_f32::blocked:abcd:f0
diff_undef::undef::f0,attr-scratchpad:user ,alg:eltwise_relu alpha:0 beta:0,1x5x5x3,0.297852

66Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Mixed precision (BF16 & FP16)

• Use Keras mixed precision API in Stock
TensorFlow

• ITEX is compatible

• mixed_precision.set_global_policy('mixed_float16’)
OR
• mixed_precision.set_global_policy('mixed_bfloat16')

Use Advanced Auto Mixed Precision provided by ITEX
for better performance

§ 2 modes of activation
§ Can be run from frozen graph
§ Support for fused operations

67Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

ITEX – Advanced Auto Mixed Precision : Python API

• ITEX advanced AMP can be set from code:
import intel_extension_for_tensorflow as itex

auto_mixed_precision_options = itex.AutoMixedPrecisionOptions()
auto_mixed_precision_options.data_type = itex.BFLOAT16 (or itex.FLOAT16)

graph_options = itex.GraphOptions()
graph_options.auto_mixed_precision_options=auto_mixed_precision_options
graph_options.auto_mixed_precision = itex.ON

config = itex.ConfigProto(graph_options=graph_options)
itex.set_backend("gpu", config) [in ITEX v1.0.0 and ITEX v1.1.0]

(NOTE) --> itex.set_config(config) [latest master branch]

68Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

ITEX – Advanced Auto Mixed Precision :
Environment Variable
• ITEX advanced AMP can also be set via env variables:

export ITEX_AUTO_MIXED_PRECISION=1
export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE="BFLOAT16" (or "FLOAT16“)

69Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Enable BF 16 capabilities using ITEX

• ./infer_fp32_vs_amp.sh gpu bf16

• The output of enabling auto
mixed precision is shown.

• Code sample can be
found here: https://github.com/i
ntel/intel-extension-for-
tensorflow/tree/main/examples/
infer_inception_v4_amp

https://github.com/intel/intel-extension-for-tensorflow/tree/main/examples/infer_inception_v4_amp
https://github.com/intel/intel-extension-for-tensorflow/tree/main/examples/infer_inception_v4_amp
https://github.com/intel/intel-extension-for-tensorflow/tree/main/examples/infer_inception_v4_amp
https://github.com/intel/intel-extension-for-tensorflow/tree/main/examples/infer_inception_v4_amp

70Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Customized ITEX operators
• Itex.ops.ItexLSTM

• Has same semantic with tf.keras.layers.LSTM.
• Based on available runtime / hardware, layer will choose ITEX or TF

implementation to maximize performance.

• Other such operators are:
• itex.ops.gelu
• itex.ops.LayerNormalization
• itex.ops.AdamWithWeightDecayOptimizer

For more details refer here

https://intel.github.io/intel-extension-for-tensorflow/latest/docs/guide/itex_ops.html

72Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Getting Started with Model Zoo
• Model Zoo for Intel® Architecture: contains Intel optimizations for

running deep learning workloads on Intel® Xeon® Scalable processors
and Intel Data Center GPU's

• GitHub: https://github.com/IntelAI/models

https://github.com/IntelAI/models

73Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Model Zoo w/ITEX (Env Setup)
Clone Intel Model Zoo to work directory:
• $ git clone https://github.com/IntelAI/models.git

Download the Intel oneAPI sample (ResNet50_Inference):
• $ wget https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/release/2023.2/AI-and-Analytics/Features-and-

Functionality/IntelTensorFlow_ModelZoo_Inference_with_FP32_Int8/ResNet50_Inference_gpu.ipynb

Activate conda env and run an interactive session with PVC:

• $ conda activate tensorflow_xpu

• $ srun -p pvc-shared -w idc-beta-batch-pvc-node-11 --pty bash

• $ source /opt/intel/oneapi/setvars.sh

https://github.com/IntelAI/models.git
https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/release/2023.2/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_ModelZoo_Inference_with_FP32_Int8/ResNet50_Inference_gpu.ipynb
https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/release/2023.2/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_ModelZoo_Inference_with_FP32_Int8/ResNet50_Inference_gpu.ipynb

74Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Model Zoo w/ITEX (Jupyter setup)
Get the IP of your interactive session:
• $ echo $(ip a | grep -v -e "127.0.0.1" -e "inet6" | grep "inet" | awk {'print($2)}' | sed 's/\/.*//')

Launch jupyter lab from interactive session:
• $ jupyter-lab --ip 10.10.10.X

• Fill in the X with the IP you got from step above (i.e 10.10.10.14)

Take note of the IP and the port that jupyter launches on, it will look something like this:

• http://10.10.10.14:8888/lab?token=9d83e1d8a0eb3ffed84fa3428aae01e592cab170a4119130

From local terminal, port forward IP:

• $ ssh idc -L PORT:10.10.10.X:PORT
• Fill in the IP (X), and the PORT # according to the last step
• In this example it would look like this: ssh idc -L 8888:10.10.10.14:8888

http://10.10.10.8:8888/lab?token=9d83e1d8a0eb3ffed84fa3428aae01e592cab170a4119130

75Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Model Zoo w/ITEX(ResNet50 Inference Demo)

Choose data precision type [fp32/fp16/int8]

Choose batch size

Modify line to direct where Model Zoo is installed

76Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Distributed DL on XPU

77Software and Advanced Technologies Group | SATG/AIA

Multi-cards DL inference via Horovod on TensorFlow
• Pre-requisite :

• $source /opt/intel/oneapi/setvars.sh
• $source activate tensorflow_xpu
• $pip install intel-optimization-for-horovod
• Find out number of root devices (GPU cards) by “sycl-ls”

• $wget https://raw.githubusercontent.com/intel/intel-optimization-for-
horovod/main/examples/tensorflow2/tensorflow2_keras_synthetic_benchmark.py

• Example usage:
• Set $NUM_RANKS as the number of root devices
• horovodrun -np $NUM_RANKS –p 22 python tensorflow2_keras_synthetic_benchmark.py

• Details:
• Need to specific port 22 due to firewall settings in Developer cloud
• The script used SYCL backend to do distributed training and inference
• Data Parallelism distributes data across GPUs while using the same model
• The codes are from

• https://github.com/intel/intel-optimization-for-horovod/blob/main/examples/tensorflow2/tensorflow2_keras_synthetic_benchmark.py

78Software and Advanced Technologies Group | SATG/AIA

Example output and oneDNN verbose logs

• 4 root devices, 4 GPUs
• 4 ranks and one rank per GPU

Distribute oneDNN computation among gpu 0-3

79Software and Advanced Technologies Group | SATG/AIA

How to enable Horovod for TF on PVC
• Follow below official guide but replace device name from GPU to XPU

• https://github.com/horovod/horovod/blob/master/docs/tensorflow.rst

80Software and Advanced Technologies Group | SATG/AIA

Horovod timeline
• horovodrun -np 4 -p 22 --timeline-filename ./timeline.json python

tensorflow2_keras_synthetic_benchmark.py

81Software and Advanced Technologies Group | SATG/AIA

Multi-cards DL inference via DDP on PyTorch
• Pre-requisite :

• $source /opt/intel/oneapi/setvars.sh
• $source activate pytorch_xpu
• $python -m pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable-xpu
• Find out number of root devices (GPU cards) by “sycl-ls”

• $wget https://raw.githubusercontent.com/intel/torch-ccl/master/demo/demo.py
• $wget https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/master/AI-and-Analytics/Getting-Started-

Samples/Intel_oneCCL_Bindings_For_PyTorch_GettingStarted/codes_for_ipynb/gpu.patch
• $patch < ./gpu.patch

• Example usage:
• Set $NUM_RANKS as the number of root devices
• I_MPI_PORT_RANGE=50000:50500 mpirun --launcher ssh -n 4 -l python demo.py

• Details:
• Need to use ssh launcher due to SLURM limitation and assign MPI port due to firewall settings
• The script used SYCL backend to do distributed training and inference
• Data Parallelism distributes data across GPUs while using the same model
• The codes are from

• https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Getting-Started-Samples/Intel_oneCCL_Bindings_For_PyTorch_GettingStarted

https://developer.intel.com/ipex-whl-stable-xpu
https://raw.githubusercontent.com/intel/torch-ccl/master/demo/demo.py

82Software and Advanced Technologies Group | SATG/AIA

Example output and oneCCL verbose logs

• 4 root devices, 4 GPUs
• 4 ranks and one rank per GPU

Spent 40% of time on XPU
allreduce

CCL_LOG_LEVEL=info I_MPI_PORT_RANGE=50000:50500 mpirun --launcher ssh -n 4 -l python
demo.py

4 ranks and no subdev

83Software and Advanced Technologies Group | SATG/AIA

How to enable DDP for PT on PVC
• Follow below official guide but replace device name from GPU or CPU to

XPU and change backend to ccl
• https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

85Software and Advanced Technologies Group | SATG/AIA Intel Corporation Confidential/Proprietary

Back Up

86Software and Advanced Technologies Group | SATG/AIA

