Introduction to the Julia Programming
Language

NSF ACES

Jian Tao and Wes Brashear
20 July 2024

TA*:«"..’ AII'W
| Ol g ' . UNIVERSITY OF
R High Performance I ILLINOIS

COMPUTING CENTER Research Computing ~ E=d ureana TCHAMPAIGN
DIVISION OF RESEARCH

ACES | utamu.edu/aces | ACES Workshop 2024

Introduction to Julia: Outline

Part I. A brief overview of
Julia (~10 mins)

Part Il. Getting Started with
Julia on ACES (~10 mins)

ACES | utamu.edu/aces | ACES Workshop 2024

Part V. Plotting with Julia
(~10 mins)

Part IV. Variables, Data
Types and Structures,
Functions and Flow Control
(~35 mins)

Part lll. Mathematical
Operations in Julia
(~10 mins)

Part I: A brief overview of Julia

Julia is a high-level general-purpose dynamic programming language
primarily designed for high-performance numerical analysis and
computational science.

= Born in MIT's Computer Science and Artificial Intelligence Lab in 2009
Combined the best features of Ruby, MatLab, C, Python, R, and others
First release in 2012
Latest stable release v1.10.2 as of Mar 31, 2024
https://julialang.org/
customized for "greedy, unreasonable, demanding programmers".
Julia Computing established in 2015 to provide commercial support.

ACES | utamu.edu/aces | ACES Workshop 2024

https://julialang.org/
https://juliacomputing.com/

Major features of Julia:
Fast: designhed for high performance
General: supporting different programming
patterns

"Julia is as
programmable as
Python while it is as fast
as Fortran for number

Dynamic: dynamically-typed with good support for crunching. It is like

interactive use Python on steroids."

Technical: efficient numerical computing with a

math-friendly syntax —-an onc;/;yn;ois Julia
o A L user on the firs

Optionally typed: a rich language of descriptive impression of Julia.

data types

Composable: Julia's packages naturally work well

together

ACES | utamu.edu/aces | ACES Workshop 2024

Where to Run Julia

Juno IDE - developed for the Julia language (no
longer under development)

VSCode - extensions for Julia are actively being
managed

Jupyter Notebook
Julia REPL

o Run, Evaluate, Print, Loop
Interactive
Searchable history, tab-completion, keybindings,
dedicated help and shell modes

ACES | utamu.edu/aces | ACES Workshop 2024

Part |l: Getting started with Julia on ACES

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

ACES | utamu.edu/aces | ACES Workshop 2024

Accessing the HPRC ACES Portal

TEXAS A&M HIGH PERFORMANCE RESEARCH COMPUTING

Home User Services Resources Research Policies Events Training About @ Portal

WA ,/ 3 VAV A ll.p it

Terra Portal

Grace Portal

FASTER Portal

Quick Links

New User Information

Accounts o .
Apply for Accounts 5 — — B ACES Portal (ACCESS)
Manage Accounts r = -

User Consulting

Training

Knowledge Base

Software

FAQ

FASTER Portal (ACCESS)

User Guides

ACES | utamu.edu/aces | ACES Workshop 2024

Accessing the HPRC ACES Portal
FACCESS

Consent to Attribute Release

TAMU ACES ACCESS OIDC requests access to the following information. If you do not approve this
request, do not proceed.

« Your ClLogon user identifier

* Your name

* Your email address

« Your username and affiliation from your identity provider

Select an Identity Provider

Select the Identity Provider
appropriate for your account

ACCESS CI (XSEDE)

DRemamber this selection ©

By selecting "Log On", you agree to the privacy policy.

ACES | utamu.edu/aces | ACES Workshop 2024

Accessing the ACES Shell

ACES OnDemand Portal Files ~ Jobs ~ Clusters ~ | Interactive Apps ~ Affinity Groups ~ Dashboard ~ @ My Interactive Sessions

- >_aces Shell Access

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

ACES | utamu.edu/aces | ACES Workshop 2024

V@"

S N MR AR R IR RN R A IR RO AR RN HA AR AN A A A AN F K

- Unauthorized use of HPRC resources is prohibited and subject to
criminal prosecution.

US citizens and legal residents.

-~ Authorized users must also adhere to ALL policies at:

* % O ¥ ¥ ¥ ¥ F F ¥

- Use of HPRC resources in violation of United States export control
laws and regulations is prohibited. Current HPRC staff members are

B e e S e e S e

Most H1@@s are available again. We plan to return the remaining 4 H100s

to service early next week after a hardware component is replaced.

To see these messages again, run the motd command.
Your current disk quotas are:
Disk Disk Usage Limit File Usage
/home/u.eul00000 2.7G 10.0G6 8593
/scratch/user/u.eul00000 1.6T 5.0T 80960
/scratch/group/p.sta220004.000 4K 1.0T7
/scratch/group/p.tra230003.000 4K 1.07
/scratch/group/p.tra220029.000 4K 1.0T7
Type 'showquota' to view these quotas again.
[u.eul00000@aces.loginl ~]$

ACES | utamu.edu/aces | ACES Workshop 2024

Limit
10000
250000
500000
500000
500000

* ¥ K F ¥ X K X K ¥

10

Using Pre-installed Julia Modules

Step 1. Find the module to be loaded Step 2. Load the module

$ module spider julia $ module load Julia/1.10.2-linux-x86_64

Description: l
Julia is a high-level, high-performance

dynamic programming language for numerical -

Versions: 3 julia
Julia/1.8.5-linux-x86_ 64
Julia/1.9.3-linux-x86_64
Julia/1.1 0.0-mus|-x86_64 [u.jt1630@aces-loginl ~]$ julia

Julia/1.10.2-linux-x86_64

Documentation: https://docs.julialang.org
Type "?" for help, "1?" for Pkg help.

Version 1.10.2 (2024-03-01)
Official https://julialang.org/ release

|
|
|
|
|
|
|

You can also use the web-based interface to find software
modules available on HPRC systems.

ACES | utamu.edu/aces | ACES Workshop 2024

https://hprc.tamu.edu/software/aces/

Installing Your Own Copy of Julia

Step 1. Find the version to be installed
at Download Julia

Current stable release: v1.10.4 (June 4, 2024)

Checksums for this release are available in both SHA256 and MD5 formats.
Platform 64-bit 32-bit
Windows [help] installer, portable installer, portable
macOS x86 (Intel or Rosetta) [help] .dmg, .tar.gz

macOS (Apple Silicon) [help] .dmg, .tar.gz

|I Generic Linux on x86 [help] glibc (GPG), musll'! (GPG) glibc (GPG)

Generic Linux on ARM [help] AArch64 (GPG)
Generic Linux on PowerPC [help] little endian (GPG)

Generic FreeBSD on x86 [help] .tar.gz (GPG)

* You can install the latest Julia version (v1.10.4 June 4, 2024)
directly by running this in your terminal:

$curl -fsSL https://install.julialang.org | sh

Step 2. Download & Unzip

$ cd $SCRATCH

$ wget https://.../julia-1.10.4-linux-x86_64.tar.gz
$ tar -zxvf julia-1.10.4-linux-x86_64.tar.gz

v

Step 3. Start Julia REPL

$ module purge

$ cd $SCRATCHY/julia-1.10.4/bin; ./julia

[u.jt1630@aces-loginl binl$./julia

ACES | utamu.edu/aces | ACES Workshop 2024

Documentation: https://docs.julialang.org
Type "?" for help, "1?" for Pkg help.

Version 1.10.4 (2024-06-04)
Official https://julialang.org/ release

https://julialang.org/downloads/

O)

Installing Julia Packages

export Julia Depot path (default to ~/.julia)
$export JULIA DEPOT_PATH=$SCRATCH/.julia

start Julia
$julia

type ']’ to open Pkg REPL

press backspace or ~C to quit Pkg REPL.
julia>]

(@v1.9) pkg> add Plots UnicodePlots Plotly

ACES | utamu.edu/aces | ACES Workshop 2024

13

Copying Course Examples

Navigate to your personal scratch directory

$ cd $SCRATCH

Files for this course are located at

/scratch/training/julia examples.tgz

Make a copy in your personal scratch directory

$ cp /scratch/training/julia/julia examples.tgz $SCRATCH/
Extract the files

$ tar -zxvf julia examples.tgz

Enter this directory (your local copy)

$cd julia examples

$ julia helloworld.jl

ACES | utamu.edu/aces | ACES Workshop 2024

Julia - Quickstart

The julia program starts the interactive REPL.

You can switch to the shell mode if you type a semicolon.
A question mark will switch you to the help mode.

The key can help with autocompletion.

To get version information:

julia> versioninfo ()

Special symbols can be typed with a
backslash and , but they might
not show properly on the web-based terminal.

julia> \sqgrt
julia> for 1 € 1:10 println(i) end

ACES | utamu.edu/aces | ACES Workshop 2024

Julia REPL Keybindings

Keybinding

Descrition

Ad

Exit (when buffer is empty)

Interrupt or cancel

Clear console screen

Return/Enter, AJ

New line, executing if it is complete

?or;

Enter help or shell mode (when at start of a line)

AR, AS

Incremental history search

]

Enter Pkg REPL

Backspace or Ac

Quit Pkg REPL

ACES | utamu.edu/aces | ACES Workshop 2024

Part Ill: Mathematical Operations in Julia

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

ACES | utamu.edu/aces | ACES Workshop 2024

Arithmetic Operators

e

unary plus the identity operation

unary minus maps values to their additive inverses
binary plus performs addition

binary minus performs subtraction

times performs multiplication

divide performs division

integer divide x /'y, truncated to an integer

power raises x to the yth power

remainder equivalent to rem(x.y)

ACES | utamu.edu/aces | ACES Workshop 2024

More about Arithmetic Operators

e The order of operations follows the math rules.

e The updating version of the operators is formed by
placing a "=" immediately after the operator. For instance,
X+=3 is equivalent to x=x+3.

e Unicode could be defined as operator.

e A "dot" operation is automatically defined to perform

the operation element-by-element on arrays in every
binary operation.

Numeric Literal Coefficients: Julia allows variables to be

Immediately preceded by a numeric literal, implying
multiplication.

ACES | utamu.edu/aces | ACES Workshop 2024

Arithmetic Expressions

Some examples:

julia> 10/5%*2

julia> 5*243+4\2

julia> -274

julia> 871/3

julia> pi*e

julia> x=1; x+=3.1

julia> x=[1,2]; x = x.7(-2)

ACES | utamu.edu/aces | ACES Workshop 2024

Relational Operators

True, if it Is equal

True, if not equal to #\ne <TAB>

less than

greater than

less than or equal to #\le <TAB>
greater than or equal to #\ge <TAB>

*try #(4,5), what does this mean? How about !=(4,5)

ACES | utamu.edu/aces | ACES Workshop 2024

Boolean and Bitwise Operators

&& Logical and
| Logical or

! Not

XOr() Exclusive OR
| Bitwise OR

~ Negate

& Bitwise And
>> Right shift
<< Left shift

ACES | utamu.edu/aces | ACES Workshop 2024

NaN and Inf

NaN is a not-a-number value of type NaN == NaN

Floatos.
NaN !'= NaN

Inf is positive infinity of type Floatc4.
-Inf is negative infinity of type Floatc4. NaN < NaN

e Infisequalto itself and greater than
everything else except NaN.
-Inf is equal to itself and less then
everything else except NaN.
NaN is not equal to, not less than, and
not greater than anything, including
itself.

isequal (NaN, NaN)

isnan(1/0)

ACES | utamu.edu/aces | ACES Workshop 2024

Part IV: Variables, Data Types and Structures,
Functions and Flow Control

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

ACES | utamu.edu/aces | ACES Workshop 2024

Variables

Examples:

julia> b = true; typeof (b)

Jjulia> x "Hi"

julia> y 10

julia> z = complex(l, y)

julia> println(b, x, y, 2z)

julia> b = nothing; show (b)

julia> @P=2; i=1 # \:football: <TAB> \:runner: <TAB>

ACES | utamu.edu/aces | ACES Workshop 2024

Naming Rules for Variables

Variable names must begin with a letter or
underscore

julia> 4c =12

Names can include any combinations of letters,

numbers, underscores, and exclamation symbol.

Some unicode characters could be used as well
julia>c_4=12;6=2

Maximum length for a variable name is not limited
Julia is case sensitive. The variable name A is
different than the variable name a.

ACES | utamu.edu/aces | ACES Workshop 2024

Displaying Variables

e \We can display a variable (i.e., show its value) by
simply typing the name of the variable at the
command prompt (leaving off the semicolon).

e We can also use print or println (print plus a new
line) to display variables.

Julia> print ("The value of x 1s:"); print (x)

Julia> println ("The value of x is:"); print (x)

ACES | utamu.edu/aces | ACES Workshop 2024

Exercise

Create two variables:a=4 and b =17.2

Now use Julia to perform the following set of calculations:

(b+5.4)1/3 b%-4b+5a
a>b && a>1.0 al'=b

ACES | utamu.edu/aces | ACES Workshop 2024

Data Types

e Data types in Julia are polymorphic, they can be
o dynamic: determined at runtime (e.g. Python, R)
o static: defined explicitly (e.g. Java, C++)

*more information on declaring types here: https:/docs.julialang.org/en/vVl/manual/types/

e Data types include:
o char
string
float
Nt
bool

ACES | utamu.edu/aces | ACES Workshop 2024

https://docs.julialang.org/en/v1/manual/types/

Chars and Strings

Char: represent a single character
e Denoted with single quotations **
String: can represent an object of one or more characters

o

e Denoted with double quotations

julia> a = 'H' #a is a character object

julia> b = "H" #a is a string with length 1
Strings can be easily manipulated with built-in functions:
julia> ¢ = string('s') * string('d’')

julia> length(c); d = c*10*"4"; split(d,"s")

ACES | utamu.edu/aces | ACES Workshop 2024

Working with Strings

The built-in type used for strings in Julia is String. This supports the
full range of Unicode characters via the UTF-8 encoding.

Strings are immutable.

One can do comparisons and a limited amount of arithmetic with
Char.

All indexing in Julia is 1-based: the first element of any
iInteger-indexed object is found at index 1.

julia> str = "Hello, world!"

julia> c str[1l] #c 'H'
julia> c = str[end] #c T
julia> c str[2:8] #c = "ello, w"

ACES | utamu.edu/aces | ACES Workshop 2024

Working with Strings

Interpolation: Julia allows interpolation into string literals
using $, as in Perl. To include a literal $ in a string literal,
escape it with a backslash:

julia> "1 + 2 = $(1 + 2)" #"1 + 2 = 3"
julia> print("\$100 dollars!\n")

ACES | utamu.edu/aces | ACES Workshop 2024

Working with Strings

Julia comes with a collection of tools to handle strings.

julia> str="Julia"

julia> occursin("lia", str)
julia> z repeat(str, 10)
julia> firstindex(str)
julia> lastindex(str)
julia> length(str)

Julia also supports Perl-compatible regular expressions.

julia> occursin(r"*\s* (?:#|$)", "# a comment")

ACES | utamu.edu/aces | ACES Workshop 2024

Numerical Data Types

Number

VAN

Complex{T<:Real}

U~

AbstractFloat Integer Irrational{sym} Rational{T<:Integer}

e % SN
BigFloat Float16 Float32 Float64 Bool ngmcd\’ Unsigned

Int128 Int16 Int32 Int64 UlInt128 Ulnt16 Ulnt32

ACES | utamu.edu/aces | ACES Workshop 2024

Integer Data Types

Type

Signed?

Number of bits

Smallest value

Largest value

Int8

v

8

-2"7

27 - 1

UInt8

8

2"8 - 1

Intl6

v

16

2"15 -

UIntl6

16

2"16 -

Int32

32

2"31 -

UInt32

32

2"32 -

Int64

64

2"63 -

UInt64

64

2764 -

Int128

27127 - 1

UInt128

27128 - 1

Bool

false (0)

true (1)

ACES | utamu.edu/aces | ACES Workshop 2024

Handling Big Integers

An overflow happens when a number goes beyond the
representable range of a given type. Julia provides
Biglnt type to handle big integers.

Jjulia>
julia>
Jjulia>
julia>

X
X
X
X

typemax (Int64)

1

1l == typemin (Int64)

big (typemax (Int64)) ~100

ACES | utamu.edu/aces | ACES Workshop 2024

Floating Point Data Types

Type Precision | Number of bits | Range

Floatl6 | half 16 -65504 to -6.1035e-05
6.1035e-05 to 65504

Float32 | single 32 —3.402823E38 to —1.401298E-45
1.401298E-45 to 3.402823E38

Float64 | double 64 -1.79769313486232E308 to -4.94065645841247E-324
4.94065645841247E-324 to 1.79769313486232E308

Additionally, full support for Complex and Rational Numbers
Is built on top of these primitive numeric types.

All numeric types interoperate naturally without explicit
casting thanks to a user-extensible type promotion system.

ACES | utamu.edu/aces | ACES Workshop 2024

Working with Floating Points

Perform each of the following calculations in your
head.

julia> a 4/3

julia> b a -1

julia> c 3*b

julia> e 1 -c

What does Julia get?

ACES | utamu.edu/aces | ACES Workshop 2024

Working with Floating Points

What does Julia get?
julia> a = 4/3 #1.3333333333333333

julia> b = a - 1 #0.33333333333333326
julia> c = 3*b #0.9999999999999908
julia> e = 1 - c #2.220446049250313e-16

It is impossible to perfectly represent all real numbers using
a finite string of 1's and 0's.

ACES | utamu.edu/aces | ACES Workshop 2024

Working with Floating Points

Now try the following with BigFloat
julia> a = big(4)/3

julia> b a -1
julia> c 3*b

julia> e 1 - c #-1.7272337110188...e-77
Next, set the precision and repeat the above

julia> setprecision (4096)

BigFloat variables can store floating point data with arbitrary precision
with a performance cost.

ACES | utamu.edu/aces | ACES Workshop 2024

Complex and Rational Numbers

The global constant im is bound to the complex number i,

representing the principal square root of -1.
julia> 2(1 - 1im)

julia> sqrt(complex (-1, 0))

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal
coefficient binds more tightly than division. 3/(4*im)!=(3/4*im)

Julia has a rational number type to represent exact ratios of
integers.

Rationals are constructed using the /[operator, e.g., 9//27

ACES | utamu.edu/aces | ACES Workshop 2024

Some Useful Math Functions

Sign and absolute value functions

Rounding and division functions

Function

Descrition

Function

Descrition

round(x)

round x to the nearest integer

abs(x)

a positive value with the magnitude of x

floor(x)

round x towards -Inf

abs2(x)

the squared magnitude of x

ceil(x)

round x towards +Inf

sign(x)

indicates the sign of x, returning -1, 0, or +1

trunc(x)

round x towards zero

div(x,y)

truncated division; quotient rounded towards zero

signbit(x)

indicates whether the sign bit is on (true) or
off (false)

fld(x,y)

floored division; quotient rounded towards -Inf

copysign(x,y)

a value with the magnitude of x and the sign
ofy

cld(x,y)

ceiling division; quotient rounded towards +Inf

rem(x,y)

remainder; satisfies x == div(x,y)*y + rem(x,y);
sign matches x

flipsign(x,y)

a value with the magnitude of x and the sign
of x*y

gecd(x,y...)

greatest positive common divisor of X, y,...

lem(x,y...)

least positive common multiple of x, v,...

*The built-in math functions in Julia are
implemented in C(openlibm).

ACES | utamu.edu/aces | ACES Workshop 2024

https://github.com/JuliaMath/openlibm

Getting Help with Functions

= For help on a specific function or macro, type ? followed by its
name, and press enter. This only works if you know the name of the
function you want help with. With AS and AR you can also do historical
search.
Julia> ?cos

= Type ?help to get more information about help

Julia> ?help

ACES | utamu.edu/aces | ACES Workshop 2024

Code Elements and Syntax

e Comments start with ‘#
e Compound expressions
o Can be created with “" chains

julia>z = (x =1, y = 2, X + V)

o or with blocks: start with “begin” and finish with “end”
julia> z = begin
x =1
y = 2
X + vy

ACES | utamu.edu/aces | ACES Workshop 2024

Data Structures

Tuples: ordered sequence of elements.

e Good for small fixed-length collections

Immutable

julia> t (1, 2, 3)
jJulia> t ((1, 2), (3, 4))
Julia> t[1][2]

ACES | utamu.edu/aces | ACES Workshop 2024

Data Structures

Arrays: ordered collection of elements.

e |n Julia, arrays are used for lists, vectors, tables, and

matrices

e Mutable julia>
Julia>
Julia>
Julia>
julia>
Julia>
Julia>
Julia>
julia>

[1, 2, 3] # column vector
= [1 2 3] # row vector
= [1 2 3; 45 6] # 2x3 vector
= [n*2 for n in 1:5]
zeros(2,3); g = rand(2,3)
ones(2,3); j = £ill1("aA",9)
k reshape (rand (5,6) ,10, 3)
[a a] # hcat
[b;b] # vcat

ACES | utamu.edu/aces | ACES Workshop 2024

Array and Matrix Operations

Many Julia operators and functions can be used preceded with a
dot. These versions are the same as their non-dotted versions,
and work on the arrays element by element.

julia> b = [1 2 3; 45 7; 7 8 9]

julia> b .+ 10 each element + 10

julia> sin. (b) sin function

julia> b' transpose (transpose (b))
julia> inv (b) inverse

julia> b * b matrix multiplication
julia> ¥ element-wise multiplication
julia> . element-wise square

ACES | utamu.edu/aces | ACES Workshop 2024

Data Structures

Sets: mainly used to eliminate repeated numbers
in a sequence/list and are also used to perform
some standard set operations.

julia> months=Set (["Nov", "Dec", "Dec"])
julia> typeof (months)

julia> push! (months, "Sept")

julia> pop! (months, "Sept")

julia> in("Dec", months)

julia> m=Set(["Dec","Mar",b"Feb"])
julia> union (m,months)

julia> intersect (m,months)

julia> setdiff (m,months)

ACES | utamu.edu/aces | ACES Workshop 2024

Data Structures

Dictionaries: mappings between keys and items
stored in the dictionaries.

e To define a dictionary, use Dict ()

julia>

julia>
julia>
julia>
julia>
julia>
julia>
julia>
julia>

m=Dict("Oct"=>"October",
"Nov"=>"November",
"Dec"=>"December")

m["Oct"]

get(m, "Jan", "N/A")

haskey(m, "Jan")

m["Jan"]="January"

delete!(m, "Jan")

keys(m)

values(m)

map (uppercase, collect(keys(m)))

ACES | utamu.edu/aces | ACES Workshop 2024

Flow Control

Julia has the following controlling
constructs:

ternary expressions

boolean switching expressions

if elseif else end - conditional evaluation
for end - iterative evaluation

while end - iterative conditional evaluation
try catch error throw exception handling

ACES | utamu.edu/aces | ACES Workshop 2024

Conditional Statements

e [EXxecute statements if condition is true.
e Thereis no "switch" and "case" statement in Julia.
e There is an "ifelse" statement.

julia> a = 8

julia> if a>10
println("a > 10")

elseif a<10
println("a < 10")

else
println("a = 10")

end

ACES | utamu.edu/aces | ACES Workshop 2024

Loop Control Statements - for

for statements help repeatedly execute a block of
code for a certain number of iterations. Loop variables
are local.
julia> for i in 0:1:10
if i % 3 ==
continue
end
println (i)
end

julia> for 1 in "julia"
Prlnt(l, H_A_H)
end

ACES | utamu.edu/aces | ACES Workshop 2024

Loop Control Statements - while

while statements repeatedly execute a block of code
as long as a condition is satisfied.

julia> n =1
julia> s = 0
julia> while <= 100
S S + n
n n + 1
end

julia> println(s)

ACES | utamu.edu/aces | ACES Workshop 2024

Exception Handling Blocks

try ... catch construction checks for errors and
handles them gracefully

Jjulia> s = "test"

julia> try
S[l] - vvp"
catch err
println("caught an error: Serr")
println ("continue with execution!")
end

ACES | utamu.edu/aces | ACES Workshop 2024

Functions: Building Blocks of Julia

Two equivalent ways to Operators are functions
define a function

julia> +(1,2); plusfunc=+
julia> function func(x,y) Julia> plusfunc(2,3)
return x + y, X
end Recommended style for
function definition: append ! to
names of functions that
modify their arguments

julia> Z(x,y) = X +y, X

ACES | utamu.edu/aces | ACES Workshop 2024

Functions with Optional Arguments

You can define functions with optional arguments
with default values.

julia> function point(x, y, z=0)
println("$x, $y, $z")
end

julia> point(1l,2); point(1l,2,3)

ACES | utamu.edu/aces | ACES Workshop 2024

Keywords and Positional Arguments

Keywords can be used to label arguments. Use a
semicolon after the function's unlabelled arguments,
and follow it with one or more keyword=value pairs

julia> function func(a, b, c="one"; d="two")
println("$a, $b, $c, $d4d")
end
Jjulia> func(l,2); func(d="four", 1, 2, "three")

ACES | utamu.edu/aces | ACES Workshop 2024

Dotted Functions

Dot syntax can be used to vectorize functions, i.e., applying
functions elementwise to arrays.

julia> func(a, b) = a

julia> func(l, 2)

julia> func. ([1,2], 3)

julia> sin. (func. ([1,2],[3,4]))

ACES | utamu.edu/aces | ACES Workshop 2024

Part V: Plotting with Julia

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

ACES | utamu.edu/aces | ACES Workshop 2024

UnicodePlots

UnicodePlots is simple and
lightweight and it plots
directly in your terminal
(might not work with
web-based shell).

julia> using Plots
julia> unicodeplots ()
julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

ACES | utamu.edu/aces | ACES Workshop 2024

http://docs.juliaplots.org/latest/backends/#unicodeplots

Plotly Julia Library

Plotly creates leading open
source software for Web-based
data visualization and analytical
apps. Plotly Julia Library makes
interactive, publication-quality
graphs online (not working with

web-based shell).

julia> using Plots
julia> plotly()

julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

(A Plots.jl x| +

C @ file:///tmpl/juliawpYE2r.html

My Plot

ACES | utamu.edu/aces | ACES Workshop 2024

https://plot.ly/julia/

GR Framework

GR framework is a universal GKS QeTerm
framework for My Plet
cross-platform visualization
applications (hot working
with web-based shell).

julia> using Plots
julia> gr()

julia> plot(rand(5,5),
linewidth=4, title="My
Plot", size=(1024,1024))

ACES | utamu.edu/aces | ACES Workshop 2024

https://gr-framework.org/

Fractals

e [ractals refer to geometric
shapes containing detailed
structures at arbitrarily
small scales

Fractals appear similar at
various scales

Credit: Fractal - Wikipedia

ACES | utamu.edu/aces | ACES Workshop 2024

https://en.wikipedia.org/wiki/Fractal

Benoit Mandelbrot Set

2
Zntl = 2, T C

e z and c are complex numbers.
e Starting with z,=0.

e Mandelbrot set is the set of
values of c when Z remains
bounded for a relatively large n.

ACES | utamu.edu/aces | ACES Workshop 2024

http://www.youtube.com/watch?v=ay8OMOsf6AQ

Mandelbrot - Julia Version

function mandelbrot (a)
z =0
for i=1:50
z = z"2 + a
end
return z

end

for y=1.0:-0.05:-1.0
for x=-2.0:0.0315:0.5
abs (mandelbrot (complex (x, y))) < 2
? print ("*M) print (" ") # in one line
end
println ()

end

%
Fedededeokok
E
etttk
TRk KoK *
koK R R R R R Rk R
ok OK KKK kR R R OR R Rk Rk
ok ok Ok K K K SR R R ROR R R R R R R R R R R R o
o838 o ok ok K K K KK KRR R R ORRORORRR R R R RR
o o oK oK oK oK K K SRR RS OR R R R R R R R o o o o
o858 58 o o ok oK oK K K KO SRR R RO R R R o R R R R o o o R R o
* o6 o8 o8 o o oK oK oK K K K SRR R K R R R R R R o o R R o o R oo
TE KKK K o6 o8 o o o oK oK K K K K SRR RS R R SRR R R o o oK o o o o o
ook ok R Rk oo o ok ok ok ok ok Ok R ok Stk e ek e o R R e of R R R o ok o ok ok o ok
SRR RORORR R R o Bk ok ok ok O O o o o ok K S SR R SRR R R e o o o o ok R
s s o e e e oo o o o o o ok o o o o o ok ok o ok ok K S e e e s soR R R R R R o o o o o R R ok
e e e e e e st st o o R R R e e o o o o o o o B ok ok ok K K K K O ok sl stk R R R R R R KR R R R R
S o s o o o o e o o o o o ok ok ok ok O Ok e et steste st st R R e e o oo o o o o ok ok ok ok o KO ok ok ok ok ok Sk e et R RROR R R ok ok ok o
e e e e e e st st of o SR R o e e e o o o o o ok ok ok ok ok K K R OR ok etk e e e R oo R R RO R R Rk
e s e e e e e ofeofe o o o o o o o o o o ok ok ok ok ok ok K S e e e ettt R R R R R e e e ok ok o R R ok
sesete oo eoRoRoRoR R R ook ok ok ok ok ok ok ok K ok ettt st R R R R R e e o ok ok ok R R ok
ek e e ok ok ok o3k ok o ok ok ok ROk Ok ok ok kel et teoRoeoR koo R R R R R R R ok ok
ko RRkkk K ook ok o ok ok ok KOk ROk etttk e toRRORo ek ok ook o R R R ok ok
* ook o o ok ok ok ok K ROk etttk e oR SRR ook ok R R R R R ok ok
ook ok o ok ok ok K R OR RO kel oOR ROk Rk R R R R R R R R R R ok
L e
3% o ok ok K K K KK SRRk R R R RO R R R R R R R R
ok kR K K K SRR R R RRROR R R R R R R R R R R R o
R OK KKK R R RRRORR RO R R
* kK R R R R R R R
FEREEEEEER KK *
FE IR
L
TRk ERk
*%

The first published picture of the Mandelbrot set, by Robert W. Brooks and Peter
Matelski in 1978, reproduced with the code to the left.

ACES | utamu.edu/aces | ACES Workshop 2024

Online Resources

Official Julia Document
https://docs.julialang.org/en/\vl/
Julia Online Tutorials
https:/julialang.org/learning/

Introducing Julia (Wikibooks.org)
https://en.wikibooks.org/wiki/Introducing_Julia

MATLAB-Python-Julia cheatsheet
https://cheatsheets.quantecon.org/

The Fast Track to Julia
https://juliadocs.github.io/Julia-Cheat-Sheet/

ACES | utamu.edu/aces | ACES Workshop 2024

https://docs.julialang.org/en/v1/
https://julialang.org/learning/
https://en.wikibooks.org/wiki/Introducing_Julia
https://cheatsheets.quantecon.org/
https://juliadocs.github.io/Julia-Cheat-Sheet/

Acknowledgments

The slides are created based on the materials from Julia official website
and the Wikibook Introducing Julia at wikibooks.org.

Support from Texas A&M Engineering Experiment Station (TEES), Texas
A&M Institute of Data Science (TAMIDS), and Texas A&M High
Performance Research Computing (HPRC).

Support from NSF OAC Award #2019129 - MRI: Acquisition of FASTER -
Fostering Accelerated Sciences Transformation Education and Research
Support from NSF OAC Award #2112356 - Category II: ACES -
Accelerating Computing for Emerging Sciences

ACES | utamu.edu/aces | ACES Workshop 2024

https://tees.tamu.edu/
https://tamids.tamu.edu/
https://tamids.tamu.edu/
https://hprc.tamu.edu/
https://hprc.tamu.edu/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2019129&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2112356

Texas A&M at PEARC24

Talk/Event

Tutorial: Hands-on exercises on the Intel Data Center GPU Max 1100 (PVC-GPU) for
Al/ML and Molecular Dynamics Workflows on the ACES Testbed

Seventh Workshop on Strategies for Enhancing HPC Education and Training (SEHET24)

Workshop: Providing cutting-edge computing testbeds to the science and engineering
community

Workshop: Engaging Secondary Students in Computing: K12 Outreach

Cultivating Cyberinfrastructure Careers through Student Engagement at Texas A&M
University High Performmance Research Computing

Insight Gained from Migrating a Machine Learning Model to Intelligence Processing
Units

BOF 4: What's in it for me? How can we truly democratize the research computing and
data community?

Date/Time

Mon, July 22, 2024
9:00 AM-12:30 PM ET

Mon, July 22, 2024
9:00 AM-12:30 PM ET

Mon, July 22, 2024
1:30 PM-5:00 PM ET

Mon, July 22, 2024
1:30 PM-5:00 PM ET

Tue, July 23,2024
11:00 AM-T1:25 AM ET

Tue, July 23,2024
11:00 AM-T1:25 AM ET

Tue, July 23,2024
1:30 PM-2:30 PM ET

ACES | utamu.edu/aces | ACES Workshop 2024

Room

Room 553B

Room 557

Room 554A

Room 553A

Junior Ballroom

Room 551 A&B

Room 551 A&B

Texas A&M at PEARC24

Talk/Event

BRICCs: Building Pathways to Research Cyberinfrastructure at Under Resourced
Institutions

Memory Bandwidth Performance across Accelerators

Container Adoption in Campus High Performance Computing

Engaging Secondary Students in Computing and Cybersecurity

Exploring the Viability of Composable Architectures to Overcome Memory Limitations
in High Performance Computing Workflows

Performance of Molecular Dynamics Acceleration Strategies on Composable
Cyberinfrastructure

BOF 17: Fantastic ACCESS Cyberinfrastructure Resources and Where to Find Them

BOF 18: Recipes to build successful cross-institutional collaborative computing

Date/Time

Tue, July 23,2024
325 PM-3:50 PM ET

Tue, July 23,2024
3:25 PM-3:50 PM ET

Wed, July 24, 2024
11:00 AM-11:25 AM ET

Wed, July 24, 2024
315 PM-3:30 PM ET

Wed, July 24, 2024
3:45 PM-4:00 PM ET

Wed, July 24, 2024
415 PM-430 PM ET

Wed, July 24, 2024
4:45 PM-5:45 PM ET

Wed, July 24, 2024
4:45 PM-5:45 PM ET

ACES | utamu.edu/aces | ACES Workshop 2024

Room

Junior Ballroom

Ballroom B

Ballroom B

Room 557

Room 553 A&B

Room 551 A&B

Room 553 A&B

Junior Ballroom

i

High Performance
Research Computing
DIVISION OF RESEARCH

Thank you

We gratefully acknowledge support from National Science Foundation
awards #2112356 (ACES), #2019129 (FASTER) and #19257614 (SWEETER)
Please visit our talks and BoFs at PEARC24

Helpdesk: help@hprc.tamu.edu

ACES | utamu.edu/aces | ACES Workshop 2024

mailto:help@hprc.tamu.edu

