
ACES | u.tamu.edu/aces | ACES Workshop 2024

Introduction to the Julia Programming
Language

NSF ACES

Jian Tao and Wes Brashear
20 July 2024

1

ACES | u.tamu.edu/aces | ACES Workshop 2024 2

Introduction to Julia: Outline

Part II. Getting Started with
Julia on ACES (~10 mins)

Part I. A brief overview of
Julia (~10 mins)

Part III. Mathematical
Operations in Julia
(~10 mins)

Part V. Plotting with Julia
(~10 mins)

Part IV. Variables, Data
Types and Structures,
Functions and Flow Control
(~35 mins)

05

01

02 03

04

ACES | u.tamu.edu/aces | ACES Workshop 2024 3

Julia is a high-level general-purpose dynamic programming language
primarily designed for high-performance numerical analysis and
computational science.
▪ Born in MIT's Computer Science and Artificial Intelligence Lab in 2009
▪ Combined the best features of Ruby, MatLab, C, Python, R, and others
▪ First release in 2012
▪ Latest stable release v1.10.2 as of Mar 31, 2024
▪ https://julialang.org/
▪ customized for "greedy, unreasonable, demanding programmers".
▪ Julia Computing established in 2015 to provide commercial support.

Part I: A brief overview of Julia

https://julialang.org/
https://juliacomputing.com/

ACES | u.tamu.edu/aces | ACES Workshop 2024 4

Major features of Julia:
● Fast: designed for high performance
● General: supporting different programming

patterns
● Dynamic: dynamically-typed with good support for

interactive use
● Technical: efficient numerical computing with a

math-friendly syntax
● Optionally typed: a rich language of descriptive

data types
● Composable: Julia’s packages naturally work well

together

"Julia is as
programmable as
Python while it is as fast
as Fortran for number
crunching. It is like
Python on steroids."

--an anonymous Julia
user on the first
impression of Julia.

ACES | u.tamu.edu/aces | ACES Workshop 2024

Where to Run Julia

5

● Juno IDE - developed for the Julia language (no
longer under development)

● VSCode - extensions for Julia are actively being
managed

● Jupyter Notebook

● Julia REPL

○ Run, Evaluate, Print, Loop
○ Interactive
○ Searchable history, tab-completion, keybindings,

dedicated help and shell modes

ACES | u.tamu.edu/aces | ACES Workshop 2024

Part II: Getting started with Julia on ACES

6

ACES | u.tamu.edu/aces | ACES Workshop 2024 7

Accessing the HPRC ACES Portal

ACES | u.tamu.edu/aces | ACES Workshop 2024 8

Accessing the HPRC ACES Portal

Select the Identity Provider
appropriate for your account

ACES | u.tamu.edu/aces | ACES Workshop 2024 9

Accessing the ACES Shell

ACES | u.tamu.edu/aces | ACES Workshop 2024 10

ACES | u.tamu.edu/aces | ACES Workshop 2024 11

Using Pre-installed Julia Modules
Step 1. Find the module to be loaded

$ module spider julia
...
Description:

Julia is a high-level, high-performance
dynamic programming language for numerical
computing

 Versions:
 Julia/1.8.5-linux-x86_64
 Julia/1.9.3-linux-x86_64
 Julia/1.10.0-musl-x86_64
 Julia/1.10.2-linux-x86_64

...

Step 2. Load the module

$ module load Julia/1.10.2-linux-x86_64

Step 3. Start Julia REPL

$ julia

You can also use the web-based interface to find software
modules available on HPRC systems.

https://hprc.tamu.edu/software/aces/

ACES | u.tamu.edu/aces | ACES Workshop 2024

Installing Your Own Copy of Julia

12

Step 1. Find the version to be installed
at Download Julia

* You can install the latest Julia version (v1.10.4 June 4, 2024)
directly by running this in your terminal:

$curl -fsSL https://install.julialang.org | sh

Step 2. Download & Unzip
$ cd $SCRATCH
$ wget https://.../julia-1.10.4-linux-x86_64.tar.gz
$ tar -zxvf julia-1.10.4-linux-x86_64.tar.gz

Step 3. Start Julia REPL
$ module purge
$ cd $SCRATCH/julia-1.10.4/bin; ./julia

https://julialang.org/downloads/

ACES | u.tamu.edu/aces | ACES Workshop 2024

Installing Julia Packages

13

export Julia Depot path (default to ~/.julia)
$export JULIA_DEPOT_PATH=$SCRATCH/.julia

start Julia
$julia

type ']' to open Pkg REPL
press backspace or ^C to quit Pkg REPL.
julia>]
(@v1.9) pkg> add Plots UnicodePlots Plotly

ACES | u.tamu.edu/aces | ACES Workshop 2024

Copying Course Examples
● Navigate to your personal scratch directory

$ cd $SCRATCH

● Files for this course are located at

/scratch/training/julia_examples.tgz

Make a copy in your personal scratch directory

$ cp /scratch/training/julia/julia_examples.tgz $SCRATCH/

● Extract the files

$ tar -zxvf julia_examples.tgz

● Enter this directory (your local copy)

$ cd julia_examples

$ julia helloworld.jl

14

ACES | u.tamu.edu/aces | ACES Workshop 2024

Julia - Quickstart
● The julia program starts the interactive REPL.
● You can switch to the shell mode if you type a semicolon.
● A question mark will switch you to the help mode.
● The <TAB> key can help with autocompletion.
● To get version information:

julia> versioninfo()

15

● Special symbols can be typed with a
backslash and <TAB>, but they might
not show properly on the web-based terminal.
julia> \sqrt <TAB>

 julia> for i ∈ 1:10 println(i) end #\in
<TAB>

ACES | u.tamu.edu/aces | ACES Workshop 2024

Julia REPL Keybindings

16

Keybinding Descrition

^d Exit (when buffer is empty)

^c Interrupt or cancel

^l Clear console screen

Return/Enter, ^J New line, executing if it is complete

? or ; Enter help or shell mode (when at start of a line)

^R, ^S Incremental history search

] Enter Pkg REPL

Backspace or ^c Quit Pkg REPL

ACES | u.tamu.edu/aces | ACES Workshop 2024

Part III: Mathematical Operations in Julia

17

ACES | u.tamu.edu/aces | ACES Workshop 2024

Arithmetic Operators

18

Expression Name Description

+x unary plus the identity operation

-x unary minus maps values to their additive inverses

x + y binary plus performs addition

x - y binary minus performs subtraction

x * y times performs multiplication

x / y divide performs division

x ÷ y integer divide x / y, truncated to an integer

x ^ y power raises x to the yth power

x % y remainder equivalent to rem(x,y)

ACES | u.tamu.edu/aces | ACES Workshop 2024

More about Arithmetic Operators

● The order of operations follows the math rules.
● The updating version of the operators is formed by

placing a "=" immediately after the operator. For instance,
x+=3 is equivalent to x=x+3.

● Unicode could be defined as operator.
● A "dot" operation is automatically defined to perform

the operation element-by-element on arrays in every
binary operation.

● Numeric Literal Coefficients: Julia allows variables to be
immediately preceded by a numeric literal, implying
multiplication.

19

ACES | u.tamu.edu/aces | ACES Workshop 2024

Arithmetic Expressions

Some examples:

20

julia> 10/5*2
julia> 5*2^3+4\2
julia> -2^4
julia> 8^1/3
julia> pi*ℯ #\euler <TAB>
julia> x=1; x+=3.1
julia> x=[1,2]; x = x.^(-2)

ACES | u.tamu.edu/aces | ACES Workshop 2024

Relational Operators

== True, if it is equal
!=,≠ True, if not equal to #\ne <TAB>
< less than
> greater than
<=,≤ less than or equal to #\le <TAB>
>=,≥ greater than or equal to #\ge <TAB>

* try ≠(4,5), what does this mean? How about !=(4,5)

21

ACES | u.tamu.edu/aces | ACES Workshop 2024

Boolean and Bitwise Operators

&& Logical and
|| Logical or
! Not
xor() Exclusive OR
∣ Bitwise OR
~ Negate
& Bitwise And
>> Right shift
<< Left shift

22

ACES | u.tamu.edu/aces | ACES Workshop 2024

NaN and Inf

23

NaN is a not-a-number value of type

Float64.

Inf is positive infinity of type Float64.

-Inf is negative infinity of type Float64.

● Inf is equal to itself and greater than
everything else except NaN.

● -Inf is equal to itself and less then
everything else except NaN.

● NaN is not equal to, not less than, and
not greater than anything, including
itself.

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false

julia> isequal(NaN, NaN)
true

julia> isnan(1/0)
false

ACES | u.tamu.edu/aces | ACES Workshop 2024

Part IV: Variables, Data Types and Structures,
Functions and Flow Control

24

ACES | u.tamu.edu/aces | ACES Workshop 2024

Variables
Examples:

julia> b = true; typeof(b)
julia> x = "Hi"
julia> y = 10
julia> z = complex(1, y)
julia> println(b, x, y, z)
julia> b = nothing; show(b)
julia> 🏈=2; 🏃=1 # \:football: <TAB> \:runner: <TAB>

25

ACES | u.tamu.edu/aces | ACES Workshop 2024

Naming Rules for Variables

● Variable names must begin with a letter or
underscore

julia> 4c = 12
● Names can include any combinations of letters,

numbers, underscores, and exclamation symbol.
Some unicode characters could be used as well

julia> c_4 = 12; δ = 2
● Maximum length for a variable name is not limited
● Julia is case sensitive. The variable name A is

different than the variable name a.

26

ACES | u.tamu.edu/aces | ACES Workshop 2024

Displaying Variables

● We can display a variable (i.e., show its value) by
simply typing the name of the variable at the
command prompt (leaving off the semicolon).

● We can also use print or println (print plus a new
line) to display variables.

julia> print("The value of x is:"); print(x)

julia> println("The value of x is:"); print(x)

27

ACES | u.tamu.edu/aces | ACES Workshop 2024

Exercise

28

Create two variables: a = 4 and b = 17.2

Now use Julia to perform the following set of calculations:

 (b+5.4)1/3 b2-4b+5a
 a>b && a>1.0 a!=b

ACES | u.tamu.edu/aces | ACES Workshop 2024

Data Types

● Data types in Julia are polymorphic, they can be
○ dynamic: determined at runtime (e.g. Python, R)
○ static: defined explicitly (e.g. Java, C++)

*more information on declaring types here: https://docs.julialang.org/en/v1/manual/types/

● Data types include:
○ char
○ string
○ float
○ int
○ bool

29

https://docs.julialang.org/en/v1/manual/types/

ACES | u.tamu.edu/aces | ACES Workshop 2024

Chars and Strings
Char: represent a single character

● Denoted with single quotations ‘ ‘

String: can represent an object of one or more characters

● Denoted with double quotations “ “

julia> a = 'H' #a is a character object

julia> b = "H" #a is a string with length 1

Strings can be easily manipulated with built-in functions:

julia> c = string('s') * string('d')

julia> length(c); d = c^10*"4"; split(d,"s")

30

ACES | u.tamu.edu/aces | ACES Workshop 2024

Working with Strings

31

1. The built-in type used for strings in Julia is String. This supports the
full range of Unicode characters via the UTF-8 encoding.

2. Strings are immutable.
3. One can do comparisons and a limited amount of arithmetic with

Char.
4. All indexing in Julia is 1-based: the first element of any

integer-indexed object is found at index 1.

julia> str = "Hello, world!"
julia> c = str[1] #c = 'H'
julia> c = str[end] #c = '!'
julia> c = str[2:8] #c = "ello, w"

ACES | u.tamu.edu/aces | ACES Workshop 2024

Working with Strings

Interpolation: Julia allows interpolation into string literals
using $, as in Perl. To include a literal $ in a string literal,
escape it with a backslash:

julia> "1 + 2 = $(1 + 2)" #"1 + 2 = 3"
julia> print("\$100 dollars!\n")

32

ACES | u.tamu.edu/aces | ACES Workshop 2024

Working with Strings

33

Julia comes with a collection of tools to handle strings.

julia> str="Julia"
julia> occursin("lia", str)
julia> z = repeat(str, 10)
julia> firstindex(str)
julia> lastindex(str)
julia> length(str)

Julia also supports Perl-compatible regular expressions.

julia> occursin(r"^\s*(?:#|$)", "# a comment")

ACES | u.tamu.edu/aces | ACES Workshop 2024

Numerical Data Types

34

ACES | u.tamu.edu/aces | ACES Workshop 2024

Integer Data Types

35

Type Signed? Number of bits Smallest value Largest value
Int8 ✓ 8 -2^7 2^7 - 1

UInt8 8 0 2^8 - 1

Int16 ✓ 16 -2^15 2^15 - 1

UInt16 16 0 2^16 - 1

Int32 ✓ 32 -2^31 2^31 - 1

UInt32 32 0 2^32 - 1

Int64 ✓ 64 -2^63 2^63 - 1

UInt64 64 0 2^64 - 1

Int128 ✓ 128 -2^127 2^127 - 1

UInt128 128 0 2^128 - 1

Bool N/A 8 false (0) true (1)

ACES | u.tamu.edu/aces | ACES Workshop 2024

Handling Big Integers

36

An overflow happens when a number goes beyond the
representable range of a given type. Julia provides
BigInt type to handle big integers.

julia> x = typemax(Int64)
julia> x + 1
julia> x + 1 == typemin(Int64)
julia> x = big(typemax(Int64))^100

ACES | u.tamu.edu/aces | ACES Workshop 2024

Floating Point Data Types

● Additionally, full support for Complex and Rational Numbers
is built on top of these primitive numeric types.

● All numeric types interoperate naturally without explicit
casting thanks to a user-extensible type promotion system.

37

Type Precision Number of bits Range
Float16 half 16 -65504 to -6.1035e-05

6.1035e-05 to 65504

Float32 single 32 −3.402823E38 to −1.401298E-45
 1.401298E-45 to 3.402823E38

Float64 double 64 -1.79769313486232E308 to -4.94065645841247E-324
4.94065645841247E-324 to 1.79769313486232E308

ACES | u.tamu.edu/aces | ACES Workshop 2024

Working with Floating Points

38

Perform each of the following calculations in your
head.

julia> a = 4/3
julia> b = a - 1
julia> c = 3*b
julia> e = 1 - c

What does Julia get?

ACES | u.tamu.edu/aces | ACES Workshop 2024

Working with Floating Points

39

What does Julia get?

julia> a = 4/3 #1.3333333333333333

julia> b = a - 1 #0.33333333333333326

julia> c = 3*b #0.9999999999999998

julia> e = 1 - c #2.220446049250313e-16

 It is impossible to perfectly represent all real numbers using
 a finite string of 1's and 0's.

ACES | u.tamu.edu/aces | ACES Workshop 2024

Working with Floating Points

40

Now try the following with BigFloat
julia> a = big(4)/3

julia> b = a - 1

julia> c = 3*b

julia> e = 1 - c #-1.7272337110188...e-77
Next, set the precision and repeat the above

julia> setprecision(4096)

BigFloat variables can store floating point data with arbitrary precision
with a performance cost.

ACES | u.tamu.edu/aces | ACES Workshop 2024

Complex and Rational Numbers

41

The global constant im is bound to the complex number i,
representing the principal square root of -1.

julia> 2(1 - 1im)

julia> sqrt(complex(-1, 0))

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal
coefficient binds more tightly than division. 3/(4*im)!=(3/4*im)

Julia has a rational number type to represent exact ratios of
integers.
Rationals are constructed using the // operator, e.g., 9//27

ACES | u.tamu.edu/aces | ACES Workshop 2024

Some Useful Math Functions

Function Descrition

round(x) round x to the nearest integer

floor(x) round x towards -Inf

ceil(x) round x towards +Inf

trunc(x) round x towards zero

div(x,y) truncated division; quotient rounded towards zero

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,y);
sign matches x

gcd(x,y...) greatest positive common divisor of x, y,...

lcm(x,y...) least positive common multiple of x, y,...

Function Descrition
abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or
off (false)

copysign(x,y) a value with the magnitude of x and the sign
of y

flipsign(x,y) a value with the magnitude of x and the sign
of x*y

Rounding and division functions Sign and absolute value functions

* The built-in math functions in Julia are
 implemented in C(openlibm).

https://github.com/JuliaMath/openlibm

ACES | u.tamu.edu/aces | ACES Workshop 2024

Getting Help with Functions
▪ For help on a specific function or macro, type ? followed by its

name, and press enter. This only works if you know the name of the
function you want help with. With ^S and ^R you can also do historical
search.

Julia> ?cos

▪ Type ?help to get more information about help

Julia> ?help

ACES | u.tamu.edu/aces | ACES Workshop 2024

Code Elements and Syntax
● Comments start with ‘#’
● Compound expressions

○ Can be created with “;” chains

julia>z = (x = 1, y = 2, x + y)

○ or with blocks: start with “begin” and finish with “end”
julia> z = begin

 x = 1
 y = 2
 x + y
end

44

ACES | u.tamu.edu/aces | ACES Workshop 2024

Data Structures

Tuples: ordered sequence of elements.

● Good for small fixed-length collections

● Immutable

julia> t = (1, 2, 3)
julia> t = ((1, 2), (3, 4))
julia> t[1][2]

45

ACES | u.tamu.edu/aces | ACES Workshop 2024

Data Structures
Arrays: ordered collection of elements.

● In Julia, arrays are used for lists, vectors, tables, and
matrices

● Mutable

46

julia> a = [1, 2, 3] # column vector
julia> b = [1 2 3] # row vector
julia> c = [1 2 3; 4 5 6] # 2x3 vector
julia> d = [n^2 for n in 1:5]
julia> f = zeros(2,3); g = rand(2,3)
julia> h = ones(2,3); j = fill("A",9)
julia> k = reshape(rand(5,6),10,3)
julia> [a a] # hcat
julia> [b;b] # vcat

ACES | u.tamu.edu/aces | ACES Workshop 2024

Array and Matrix Operations

47

Many Julia operators and functions can be used preceded with a
dot. These versions are the same as their non-dotted versions,
and work on the arrays element by element.

julia> b = [1 2 3; 4 5 7; 7 8 9]
julia> b .+ 10 # each element + 10
julia> sin.(b) # sin function
julia> b' # transpose (transpose(b))
julia> inv(b) # inverse
julia> b * b # matrix multiplication
julia> b .* b # element-wise multiplication
julia> b .^ 2 # element-wise square

ACES | u.tamu.edu/aces | ACES Workshop 2024

Data Structures
Sets: mainly used to eliminate repeated numbers
in a sequence/list and are also used to perform
some standard set operations.

48

julia> months=Set(["Nov","Dec","Dec"])
julia> typeof(months)
julia> push!(months,"Sept")
julia> pop!(months,"Sept")
julia> in("Dec", months)
julia> m=Set(["Dec","Mar","Feb"])
julia> union(m,months)
julia> intersect(m,months)
julia> setdiff(m,months)

ACES | u.tamu.edu/aces | ACES Workshop 2024

Data Structures
Dictionaries: mappings between keys and items
stored in the dictionaries.
● To define a dictionary, use Dict()

49

julia> m=Dict("Oct"=>"October",
 "Nov"=>"November",
 "Dec"=>"December")

julia> m["Oct"]
julia> get(m, "Jan", "N/A")
julia> haskey(m, "Jan")
julia> m["Jan"]="January"
julia> delete!(m, "Jan")
julia> keys(m)
julia> values(m)
julia> map(uppercase, collect(keys(m)))

ACES | u.tamu.edu/aces | ACES Workshop 2024

Flow Control

50

Julia has the following controlling
constructs:
● ternary expressions
● boolean switching expressions
● if elseif else end - conditional evaluation
● for end - iterative evaluation
● while end - iterative conditional evaluation
● try catch error throw exception handling

ACES | u.tamu.edu/aces | ACES Workshop 2024

Conditional Statements

51

● Execute statements if condition is true.
● There is no "switch" and "case" statement in Julia.
● There is an "ifelse" statement.

julia> a = 8
julia> if a>10

 println("a > 10")
 elseif a<10
 println("a < 10")
 else

 println("a = 10")
 end

ACES | u.tamu.edu/aces | ACES Workshop 2024

Loop Control Statements - for

52

for statements help repeatedly execute a block of
code for a certain number of iterations. Loop variables
are local.

julia> for i in 0:1:10
if i % 3 == 0

 continue
 end
 println(i)
 end

julia> for l in "julia"
print(l, "-^-")

 end

ACES | u.tamu.edu/aces | ACES Workshop 2024

Loop Control Statements - while

53

while statements repeatedly execute a block of code
as long as a condition is satisfied.

julia> n = 1
julia> s = 0
julia> while n <= 100
 s = s + n
 n = n + 1
 end
julia> println(s)

ACES | u.tamu.edu/aces | ACES Workshop 2024

Exception Handling Blocks

54

try ... catch construction checks for errors and
handles them gracefully

julia> s = "test"
julia> try
 s[1] = "p"
 catch err
 println("caught an error: $err")
 println("continue with execution!")
 end

ACES | u.tamu.edu/aces | ACES Workshop 2024

Functions: Building Blocks of Julia

55

Two equivalent ways to
define a function

julia> function func(x,y)

 return x + y, x

 end

julia> Σ(x,y) = x + y, x

Operators are functions

julia> +(1,2); plusfunc=+

Julia> plusfunc(2,3)

Recommended style for
function definition: append ! to
names of functions that
modify their arguments

ACES | u.tamu.edu/aces | ACES Workshop 2024

Functions with Optional Arguments

56

You can define functions with optional arguments
with default values.

julia> function point(x, y, z=0)
 println("$x, $y, $z")

 end
julia> point(1,2); point(1,2,3)

ACES | u.tamu.edu/aces | ACES Workshop 2024

Keywords and Positional Arguments

57

Keywords can be used to label arguments. Use a
semicolon after the function's unlabelled arguments,
and follow it with one or more keyword=value pairs

julia> function func(a, b, c="one"; d="two")
println("$a, $b, $c, $d")

 end
julia> func(1,2); func(d="four", 1, 2, "three")

ACES | u.tamu.edu/aces | ACES Workshop 2024

Dotted Functions

58

Dot syntax can be used to vectorize functions, i.e., applying
functions elementwise to arrays.

julia> func(a, b) = a * b
julia> func(1, 2)
julia> func.([1,2], 3)
julia> sin.(func.([1,2],[3,4]))

ACES | u.tamu.edu/aces | ACES Workshop 2024

Part V: Plotting with Julia

59

ACES | u.tamu.edu/aces | ACES Workshop 2024

UnicodePlots

60

UnicodePlots is simple and
lightweight and it plots
directly in your terminal
(might not work with
web-based shell).

julia> using Plots
julia> unicodeplots()
julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

http://docs.juliaplots.org/latest/backends/#unicodeplots

ACES | u.tamu.edu/aces | ACES Workshop 2024

Plotly Julia Library

61

Plotly creates leading open
source software for Web-based
data visualization and analytical
apps. Plotly Julia Library makes
interactive, publication-quality
graphs online (not working with
web-based shell).

julia> using Plots
julia> plotly()
julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

https://plot.ly/julia/

ACES | u.tamu.edu/aces | ACES Workshop 2024

GR Framework

62

GR framework is a universal
framework for
cross-platform visualization
applications (not working
with web-based shell).

julia> using Plots
julia> gr()
julia> plot(rand(5,5),
linewidth=4, title="My
Plot", size=(1024,1024))

https://gr-framework.org/

ACES | u.tamu.edu/aces | ACES Workshop 2024

Fractals

● Fractals refer to geometric
shapes containing detailed
structures at arbitrarily
small scales

● Fractals appear similar at
various scales

63

Credit: Fractal - Wikipedia

https://en.wikipedia.org/wiki/Fractal

ACES | u.tamu.edu/aces | ACES Workshop 2024

Benoit Mandelbrot Set

64

● z and c are complex numbers.

● Starting with z0=0.

● Mandelbrot set is the set of
values of c when zn remains
bounded for a relatively large n.

http://www.youtube.com/watch?v=ay8OMOsf6AQ

ACES | u.tamu.edu/aces | ACES Workshop 2024

Mandelbrot - Julia Version

65

function mandelbrot(a)

 z = 0

 for i=1:50

 z = z^2 + a

 end

 return z

end

for y=1.0:-0.05:-1.0

 for x=-2.0:0.0315:0.5

 abs(mandelbrot(complex(x, y))) < 2

? print("*") : print(" ") # in one line

 end

 println()

end

The first published picture of the Mandelbrot set, by Robert W. Brooks and Peter
Matelski in 1978, reproduced with the code to the left.

ACES | u.tamu.edu/aces | ACES Workshop 2024

Online Resources
Official Julia Document
https://docs.julialang.org/en/v1/
Julia Online Tutorials
https://julialang.org/learning/
Introducing Julia (Wikibooks.org)
https://en.wikibooks.org/wiki/Introducing_Julia
MATLAB–Python–Julia cheatsheet
https://cheatsheets.quantecon.org/
The Fast Track to Julia
https://juliadocs.github.io/Julia-Cheat-Sheet/

https://docs.julialang.org/en/v1/
https://julialang.org/learning/
https://en.wikibooks.org/wiki/Introducing_Julia
https://cheatsheets.quantecon.org/
https://juliadocs.github.io/Julia-Cheat-Sheet/

ACES | u.tamu.edu/aces | ACES Workshop 2024

Acknowledgments

67

● The slides are created based on the materials from Julia official website

and the Wikibook Introducing Julia at wikibooks.org.

● Support from Texas A&M Engineering Experiment Station (TEES), Texas

A&M Institute of Data Science (TAMIDS), and Texas A&M High

Performance Research Computing (HPRC).

● Support from NSF OAC Award #2019129 - MRI: Acquisition of FASTER -

Fostering Accelerated Sciences Transformation Education and Research

● Support from NSF OAC Award #2112356 - Category II: ACES -

Accelerating Computing for Emerging Sciences

https://tees.tamu.edu/
https://tamids.tamu.edu/
https://tamids.tamu.edu/
https://hprc.tamu.edu/
https://hprc.tamu.edu/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2019129&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2112356

ACES | u.tamu.edu/aces | ACES Workshop 2024 68

Texas A&M at PEARC24
Talk/Event Date/Time Room

Tutorial: Hands-on exercises on the Intel Data Center GPU Max 1100 (PVC-GPU) for
AI/ML and Molecular Dynamics Workflows on the ACES Testbed

Mon, July 22, 2024
9:00 AM-12:30 PM ET Room 553B

Seventh Workshop on Strategies for Enhancing HPC Education and Training (SEHET24) Mon, July 22, 2024
9:00 AM-12:30 PM ET Room 557

Workshop: Providing cutting-edge computing testbeds to the science and engineering
community

Mon, July 22, 2024
1:30 PM-5:00 PM ET Room 554A

Workshop: Engaging Secondary Students in Computing: K12 Outreach Mon, July 22, 2024
1:30 PM-5:00 PM ET Room 553A

Cultivating Cyberinfrastructure Careers through Student Engagement at Texas A&M
University High Performance Research Computing

Tue, July 23, 2024
11:00 AM-11:25 AM ET Junior Ballroom

Insight Gained from Migrating a Machine Learning Model to Intelligence Processing
Units

Tue, July 23, 2024
11:00 AM-11:25 AM ET Room 551 A&B

BOF 4: What’s in it for me? How can we truly democratize the research computing and
data community?

Tue, July 23, 2024
1:30 PM-2:30 PM ET Room 551 A&B

ACES | u.tamu.edu/aces | ACES Workshop 2024 69

Texas A&M at PEARC24
Talk/Event Date/Time Room

BRICCs: Building Pathways to Research Cyberinfrastructure at Under Resourced
Institutions

Tue, July 23, 2024
3:25 PM-3:50 PM ET Junior Ballroom

Memory Bandwidth Performance across Accelerators Tue, July 23, 2024
 3:25 PM-3:50 PM ET Ballroom B

Container Adoption in Campus High Performance Computing Wed, July 24, 2024
11:00 AM-11:25 AM ET Ballroom B

Engaging Secondary Students in Computing and Cybersecurity Wed, July 24, 2024
3:15 PM-3:30 PM ET Room 557

Exploring the Viability of Composable Architectures to Overcome Memory Limitations
in High Performance Computing Workflows

Wed, July 24, 2024
3:45 PM-4:00 PM ET Room 553 A&B

Performance of Molecular Dynamics Acceleration Strategies on Composable
Cyberinfrastructure

Wed, July 24, 2024
4:15 PM-4:30 PM ET Room 551 A&B

BOF 17: Fantastic ACCESS Cyberinfrastructure Resources and Where to Find Them Wed, July 24, 2024
4:45 PM-5:45 PM ET Room 553 A&B

BOF 18: Recipes to build successful cross-institutional collaborative computing Wed, July 24, 2024
4:45 PM-5:45 PM ET Junior Ballroom

ACES | u.tamu.edu/aces | ACES Workshop 2024

Thank you
• We gratefully acknowledge support from National Science Foundation

awards #2112356 (ACES), #2019129 (FASTER) and #19257614 (SWEETER)
• Please visit our talks and BoFs at PEARC24
• Helpdesk: help@hprc.tamu.edu

mailto:help@hprc.tamu.edu

