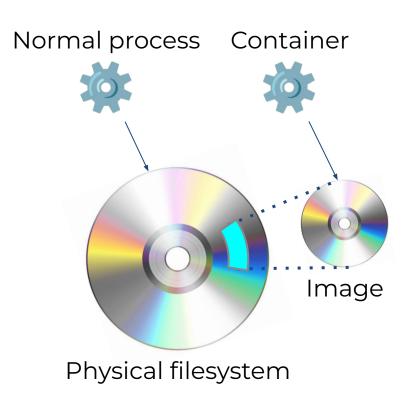
Using Containers on ACES for Simulations, Bioinformatics and AI/ML

Richard Lawrence and Joshua Winchell 7/20/2024 ACES Workshop, Providence RI

High Performance Research Computing DIVISION OF RESEARCH

Outline

- Overview of Containers on ACES
- Getting Started
- Containerized Scientific Applications
 - \circ Genomics
 - AI/ML
 - Molecular Dynamics



Overview of Containers

What Are Containers?

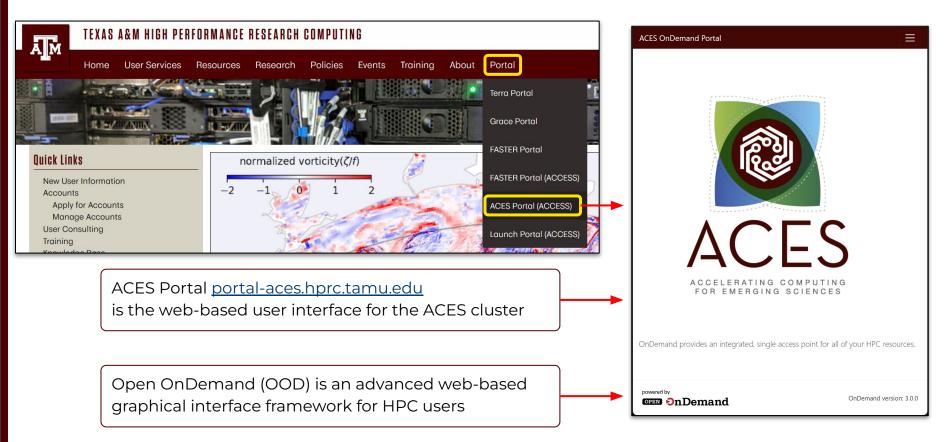
- A container is a process (*) that has its own view of local resources:
 - Filesystem
 - User IDs
 - Network etc.
- Example: this container
 (** on the right) sees the
 image instead of the
 physical filesystem

Container Runtimes on ACES

ACES offers a wide variety of Container Runtimes

*rootless installations do not support all features of the runtime

Singularity on ACES


- Singularity is available on Compute nodes
 - Singularity activities are too cpu-intensive for login nodes.
- Singularity images can be large on disk. Be aware of your storage quota. (/scratch > /home)
- Some container activities may be too I/O-intense for the shared network filesystem. Be courteous to others and use a local filesystem for large image operations.

Getting Started

ACES Portal

Get a Shell on ACES

Click on "Clusters" menu → _aces Shell Access

Success!

Welcome to the ACES login node.

Texas A&M Univers	ity Hig	h Perfo	mance Rese	arch Computing	
Website: ht	tps://h	prc.tam			
Consulting: he	1p@hprc	.tamu.e	du (preferr	ed) or (979) 84	45-0219
ACES Documentation: ht	tps://h	orc.tam	.edu/kb/Us	er-Guides/ACES	1
FASTER Documentation: ht	tps://h	orc.tam	.edu/kb/Us	er-Guides/FAST	ER
Grace Documentation: ht	tps://h	orc.tam	.edu/kb/Us	er-Guides/Grac	
Terra Documentation: ht	tps://h	orc.tam	.edu/kb/Us	er-Guides/Terr	a
YouTube Channel: ht	tps://w	w.youtu	ube.com/tex		
*****	******	******	******	******	*******
=== IMPC	RTANT PO	DLICY I	FORMATION		
- Unauthorized use of HPR	C resour	rces is	prohibited	and subject to	D
criminal prosecution.					
- Use of HPRC resources i	n viola	tion of	United Sta	tes export con	trol
laws and regulations is	prohib:	ited. Cu	urrent HPRC	staff members	are
US citizens and legal r	esident	5.			
- Sharing HPRC account an					
- Authorized users must a	lso adhe	ere to /	ALL policie	s at:	
			du/policies		
*****	******	******	*******	*****	*******
To see these me	ssages a	again. I	run the mot	d command.	
ur current disk quotas are:					
sk	Disk	Jsage	Limit	File Usage	Limit
ome/u.jw123527		170M	10.0G	632	10000
ratch/user/u.jw123527		36.5G	1.0T	124995	25000
ratch/group/p.tra230003.00	0	4K	1.0T	1	50000
	0	4K	1.0T	1	50000
cratch/group/p.tra220029.00		4K 4K	1.0T 1.0T	1	50000 50000
cratch/group/p.tra220023.00 cratch/group/p.tra220029.00 cratch/group/p.sta220004.00 pe 'showquota' to view thes	0	4K	1.0T	-	

Set Up Your Tutorial Environment

```
cd $SCRATCH
mkdir s_tutorial
cd s_tutorial
pwd
```

export TRAINING=/scratch/training/singularity
cd \$TRAINING
pwd

Set Up Your Singularity Environment

- Get to a compute node from the login node srun --time=120 --mem=4G --pty bash -i
- Return to your tutorial directory (if necessary) cd \$SCRATCH/s_tutorial
- Set your singularity cache directory for temporary files export SINGULARITY_CACHEDIR=\$TMPDIR
- Connect to the internet for fetching images module load WebProxy

Your First Singularity Container

• Singularity can fetch an image and launch a shell in one line. singularity shell --help

Activity:

 Fetch an image and launch a shell from it singularity shell docker://almalinux:8 cat /etc/redhat-release exit

Compare:

• The ACES compute nodes also have Red Hat linux installed. cat /etc/redhat-release

Containerized Scientific Applications

Biocontainers Registry Example

$\leftrightarrow \rightarrow c$	≌ a bioconta	ainers.pro/tools/b	ocbio-nextgen							☆	Ď ₿	:
BioConta	ainers		Q Regi	stry 🛈 [Documentation	O GitHub	🔤 RestFul API	y Twitter	 Schola 	IT 983	Resources 🗸	Î
	Bi	oCo	ontai	ne	rs _							
	Bioinfo	matics more	e accessible and	l reproduc	ible	warnin	ig: do no	ot atte	mpt			
singularity	y pull	docke	r://quay	.io/b	loconta	ainers/	'bcbio-ne	extgen:	1.2.9	9py	/h5e36:	£6£_3
	Readme	📚 Packa	ges and Containers	III Simila	ur Tools							
	Туре 🖕	Version 👙	Last Update 💠	Size ≑	Full Tag 💠					Security		
	docker	1.2.9	2022-05-08	279.28M	docker pull	quay.io/biocontair	ners/bcbio-nextgen:1.2	.9pyh5e36f6f_3		Ð		
	docker	1.2.9	2021-12-15	296.45M	docker pull	quay.io/biocontair	ners/bcbio-nextgen:1.2	.9pyh5e36f6f_1	D	P		

High Performance Research Computing | hprc.tamu.edu

ĀМ

Biocontainers Exercise

Image file: bcbio-nextgen-1.2.8.sif
 From docker://quay.io/biocontainers/bcbio-nextgen
 Located at: /scratch/training/singularity

Activity:

- From the login node:
 - srun --mem=4G --time=60 --pty bash -i
- From the compute node:
 cd /scratch/training/singularity or cd \$TRAINING
- (all on one line) singularity exec bcbio-nextgen-1.2.8.sif python -c "import pysam; print(pysam.__version__)"

Singularity with NVIDIA GPU

- Containers should be built with CUDA version compatible with local GPUs (CUDA \geq 11)
- Just add the --nv flag to your singularity command

Many repositories on Docker Hub have GPU-ready images. Search for images with "gpu" in tags

The nvidia cloud also provides GPU-ready images. See: https://hprc.tamu.edu/kb/Software/Singularity/Examples/#nvidia-gpu-cloud

NVIDIA Container Registry Example

PyTorch			Get Container 🗸 Deploy to Ver
<mark>()</mark> PyTorch	Accelerated with		g's image path below: a/pytorch:23.09-py3
warning: 0	do not att	PyTorch is an optimized tensor li done with a tape-based system a high level of flexibility and speed functionality. NGC Containers are the concernary to g th all dependencies included, providing an ex- sational AI, natural language processing (NL	asy place to start developing common applications, such

PyTorch NVIDIA GPU Exercise

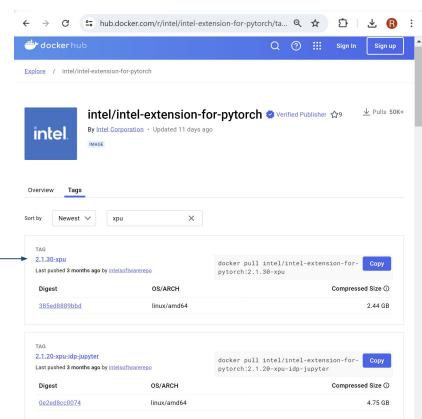
Image file: pytorch_23.09-py3.sif
 from: docker://nvcr.io/nvidia/pytorch:23.09-py3
 Located at: /scratch/training/singularity/

Activity:

From the login node: (all on one line)
 srun --mem=4G --time=60
 Following along live? add
 --reservation=workshop_h100

--gres=gpu:1 --partition=gpu --pty bash -i

- On the compute node (if necessary): cd /scratch/training/singularity or cd \$TRAINING
- From the compute node: (all on one line) singularity exec --nv pytorch_23.09-py3.sif python3 -c "import torch; print(torch.cuda.device_count())"


PyTorch with Intel GPU

- Containers should be built with OneAPI version compatible with local GPUs
- No additional steps

Many repositories on Docker Hub have GPU-ready images. Search for images with "xpu" in the tag —

Learn more about Intel extension for PyTorch at

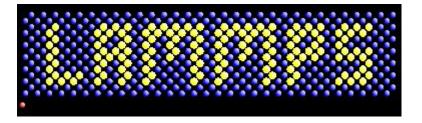
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/getting_started.html

PyTorch Intel GPU Exercise

Image file: pytorch_2.1.20-xpu-idp-jupyter.sif
 from: docker://intel/intel-extension-for-pytorch
 Located at: /scratch/training/singularity/

Activity:

From the login node: (all on one line)
 srun --mem=4G --time=60
 Following along live? add
 --reservation=workshop_pvc


--gres=gpu:1 --partition=pvc --pty bash -i

- On the compute node (if necessary): cd /scratch/training/singularity or cd \$TRAINING

LAMMPS Molecular Dynamics on GPUs

- LAMMPS is a classical MD code
- <u>https://www.lammps.org/</u> has a cool animated logo.
- NVIDIA provides GPU-ready container images for lammps. <u>https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps</u>

High Performance Research Computing | hprc.tamu.edu

LAMMPS on H100 GPUs

• This specific build works with H100 GPUs

ÅΜ

4	→ C	Catalog.ngc.nvidia.com/orgs/hpc/conta	ainers/lammps/tags					G	<	☆	*		R	:
0	NVID	DIA. NGC CATALOG									Welco	me G	uest	
*	1000 000 000 00 M	> Containers > LAMMPS									Get Cor	ntaine	er 🗸	
			Overview	Tags	Layers	Security S	canning	Related Collections	2					
			Search tags										\times]
			patch_ 08/09/2023	15Jun2(3 11:34 AM	023 561.38 MB	2 Architectures	nvcr.io/hp	c/lammps:patch_15Jun2023			1.	3	V.	
	Des	scription							_					

LAMMPS on NVIDIA GPUs

Image file: lammps-nv-patch_15Jun2023.sif
 from: docker://nvcr.io/hpc/lammps:patch_15Jun2023
 Located at: /scratch/training/singularity/

Activity (step 1):

- From the login node: (all on one line)
 srun --mem=4G --time=60
 Following along live? add
 -reservation=workshop_h100
 - --gres=gpu:1 --partition=gpu --pty bash -i
- From the compute node: cd /scratch/training/singularity or cd \$TRAINING

LAMMPS on NVIDIA GPUs

Image file: lammps-nv-patch_15Jun2023.sif
 from: docker://nvcr.io/hpc/lammps:patch_15Jun2023
 Located at: /scratch/training/singularity/

Activity (step 2):

• From the compute node: (all on one line) singularity run --nv lammps-nv-patch_15Jun2023.sif mpirun lmp -k on g 1 -sf kk -pk kokkos cuda/aware on neigh full comm device binsize 2.8 -var x 4 -var y 4 -var z 4 -in in.lj.txt -log \$TMPDIR/log.lammps

Learn More About Containers

CCEP Community Grant Awarded

ACES: Fundamentals of Containers

Prerequisites: Current ACCESS ID, basic Linux/Unix skills

This course introduces concepts of containers and covers common containerization tasks using the Charliecloud and Singularity container engines on the ACES cluster.

ACES: Containers for Scientific Workflows (Singularity / Apptainer)

Prerequisites: Current ACCESS ID, basic Linux/Unix skills

This course introduces the use of containers for scientific workflows using the Singularity container engine. Exercises will be performed using the ACES cluster, a composable accelerator testbed at Texas A&M University.

ACES: Containers for Scientific Workflows (Charliecloud)

Prerequisites: Current ACCESS ID, basic Linux/Unix skills

This course introduces the use of Containers using the Charliecloud software suite. Exercises will be performed using the ACES cluster, a composable accelerator testbed at Texas A&M University.

Texas A&M at PEARC24

Talk/Event	Date/Time	Room
Tutorial: Hands-on exercises on the Intel Data Center GPU Max 1100 (PVC-GPU) for AI/ML and Molecular	Mon, July 22, 2024 9:00 AM-12:30 PM ET	Room 553B
Seventh Workshop on Strategies for Enhancing HPC Education and Training (SEHET24)	Mon, July 22, 2024 9:00 AM-12:30 PM ET	Room 557
Workshop: Providing cutting-edge computing testbeds to the science and engineering community	Mon, July 22, 2024 1:30 PM-5:00 PM ET	Room 554A
Workshop: Engaging Secondary Students in Computing: K12 Outreach	Mon, July 22, 2024 1:30 PM-5:00 PM ET	Room 553A
Cultivating Cyberinfrastructure Careers through Student Engagement at Texas A&M University High Performance Research Computing	Tue, July 23, 2024 11:00 AM-11:25 AM ET	Junior Ballroom
Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units	Tue, July 23, 2024 11:00 AM-11:25 AM ET	Room 551 A&B
BOF 4: What's in it for me? How can we truly democratize the research computing and data community?	Tue, July 23, 2024 1:30 PM-2:30 PM ET	Room 551 A&B

Texas A&M at PEARC24

Talk/Event	Date/Time	Room
BRICCs: Building Pathways to Research Cyberinfrastructure at Under Resourced Institutions	Tue, July 23, 2024 3:25 PM-3:50 PM ET	Junior Ballroom
Memory Bandwidth Performance across Accelerators	Tue, July 23, 2024 3:25 PM-3:50 PM ET	Ballroom B
Container Adoption in Campus High Performance Computing	Wed, July 24, 2024 11:00 AM-11:25 AM ET	Ballroom B
Engaging Secondary Students in Computing and Cybersecurity	Wed, July 24, 2024 3:15 PM-3:30 PM ET	Room 557
Exploring the Viability of Composable Architectures to Overcome Memory Limitations in High Performance Computing Workflows	Wed, July 24, 2024 3:45 PM-4:00 PM ET	Room 553 A&B
Performance of Molecular Dynamics Acceleration Strategies on Composable Cyberinfrastructure	Wed, July 24, 2024 4:15 PM-4:30 PM ET	Room 551 A&B
BOF 17: Fantastic ACCESS Cyberinfrastructure Resources and Where to Find Them	Wed, July 24, 2024 4:45 PM-5:45 PM ET	Room 553 A&B
BOF 18: Recipes to build successful cross-institutional collaborative computing	Wed, July 24, 2024 4:45 PM-5:45 PM ET	Junior Ballroom

High Performance Research Computing DIVISION OF RESEARCH

Thank you

- Please visit our talks and BoFs at PEARC23
- Please join the <u>ACES affinity group</u> support.access-ci.org/affinity-groups/aces
- Questions?<u>help@hprc.tamu.edu</u>
- We gratefully acknowledge support from National Science Foundation awards #2112356 (ACES), #2019129 (FASTER) and #19257614(SWEETER)

