AI/ML Workflows on ACES Accelerators

Zhenhua He and Wesley Brashear 07/19/2024 ACES Workshop, Providence RI

High Performance Research Computing DIVISION OF RESEARCH

Outline

Introduction

Introduce HPRC resources, ACES, and how to access ACES and AI/ML

• AI/ML on Nvidia GPUs

Use Nvidia H100 to run a DL image classification model

• AI/ML on Graphcore IPUs

Introduce IPU architecture and DL model porting

• AI/ML on Intel PVC GPUs

Introduce PVC specs, run DL models on PVC GPUs

GRAPHCORE

intel

Relationship of AI, ML, and DL

- Artificial Intelligence (AI) is anything about man-made intelligence exhibited by machines.
- Machine Learning (ML) is an approach to achieve AI.
- **Deep Learning (DL)** is one technique to implement **ML**.

Types of ML Algorithms

• Supervised Learning

 trained with labeled data; including regression and classification problems

Unsupervised Learning

 trained with unlabeled data; clustering and association rule learning problems.

Reinforcement Learning

 no training data; stochastic Markov decision process; robotics and business strategy planning.

Machine Learning

MNIST - CNN Visualization

(Image Credit: https://adamharley.com/nn_vis/cnn/3d.html)

CNN Explainer

(Image Credit: https://poloclub.github.io/cnn-explainer/)

Knowledge and Data Resources

ACES Website	https://hprc.tamu.edu/aces/
ACES Quick Start Guide	https://hprc.tamu.edu/kb/Quick-Start/ACES/
ACES Portal (ACCESS)	https://portal-aces.hprc.tamu.edu/pun/sys/dashboard
ACCESS Documentation	https://support.access-ci.org/
Texas A&M HPRC YouTube Channel	https://www.youtube.com/texasamhprc

Repositories

Nvidia Deep Learning Examples	https://github.com/NVIDIA/DeepLearningExamples
Intel AI Models	https://github.com/intel/models
Graphcore Machine Learning Examples	https://github.com/graphcore/examples

Shared Datasets and Resources on ACES

- Datasets: ImageNet datasets for PyTorch and TensorFlow /scratch/data/pytorch-computer-vision-datasets /scratch/data/tensorflow-computer-vision-datasets
- NVIDIA AI models

/scratch/data/nvidia-ai-models

• Intel AI models:

/scratch/data/intel-ai-models

• Containers

/scratch/data/pytorch-max-series-multi-node-multi-card-training.sif /scratch/data/containers/nvidia-containers

ACES Accelerators Here!

Component	Quantity	Description
Graphcore IPU (Colossus)	16	Colossus GC200 IPUs. Each IPU group hosted with a CPU server as a POD16 on a 100 GbE RoCE fabric
Graphcore IPU (BOW)	16	Bow IPUs. Each IPU group hosted with a CPU server as a POD16 on a 100 GbE RoCE fabric
NVIDIA H100	30	NVIDIA GPUs for HPC, DL Training
NVIDIA A30	4	NVIDIA GPUs for HPC, DL Training, AI Inference
Intel GPU Max 1100 (PVC)	120	Intel GPUs for HPC, DL Training, Al Inference

Accessing ACES

ACES Portal

Accessing via ACCESS

Consent to Attribute Release V TAMU ACES ACCESS OIDC requests access to the following information. If you do not approve this request, do not proceed. · Your CILogon user identifier Your name Your email address · Your username and affiliation from your identity provider Select the Identity Select an Identity Provider Provider appropriate ACCESS CI (XSEDE) for your account. 1 Remember this selection 0 LOG ON By selecting "Log On", you agree to the privacy policy

Shell Access via the Portal

ACES OnDemand Portal Files • Jobs •	Clusters - Interactive Apps - A	Affinity Groups 🝷 Dashboard 🝷 🗐	Host legin.sees	Themes: Default 🗸
Get a shell terminal	>_aces Shell Access		This computer system and t purposes by authorized use result in disciplinary act may be subject to security privacy on this system exc Refer to University SAP 29 ************************************	he data herein are available only for authorized rs. Use for any other purpose is prohibited and may ions or criminal prosecution against the user. Usage testing and monitoring. There is no expectation of ept as otherwise provided by applicable privacy laws. .01.03.M0.02 Acceptable Use for more information. ************************************
right in your browser			Texas A&M Univ Website: Consulting: ACES Documentation: FASTER Documentation: Grace Documentation: Terra Documentation: YouTube Channel:	ersity High Performance Research Computing https://hprc.tamu.edu hetp@hprc.tamu.edu (preferred) or (979) 845-0219 https://hprc.tamu.edu/kb/User-Guides/ACES https://hprc.tamu.edu/kb/User-Guides/FASTER https://hprc.tamu.edu/kb/User-Guides/Farea https://hprc.tamu.edu/kb/User-Guides/Farea https://hww.youtube.com/texasamhprc
	Record		**************************************	MPORTANT POLICY INFORMATION === * HPRC resources is prohibited and subject to * is in violation of United States export control * is prohibited. Current HPRC staff members are il residents. * and password information is in violation of * shared accounts will be DisABLED. *
		\sim	* - Authorized users mus * nt **************************	t also adhere to ALL policies at: * tps://hprc.tamu.edu/policies/ * ***********************************
$\Delta \mathbf{C}$	CES		The pvc queue has been upd !! WARKING: THERE ARE Please restrict us	<pre>*** ACES Update, March 7 **** lated with a new set of nodes with 2x, 4x, and 8x PVCs. ONLY NIGHTLY BACKUPS OF USER HOME DIRECTORIES. !! age to 8_CORES across ALL login nodes.</pre>
			Users found in vie To see these Your current disk quotas a	lation of this policy will be <u>SUSPENDED</u> . messages again, run the <u>motd</u> command. re:
ACCELER FOR EM	ATING COMPUTING ERGING SCIENCES		Disk /home/u.zh108696 /scratch/user/u.zh108696 Type 'showquota' to view t [u.zh108696@aces-login2 ~]	Disk Usage Limit File Usage Limit 5.46 10.06 3148 1000 439.26 1.0T 1169787 2000000 hese quotas again. \$

ACES | u.tamu.edu /aces | ACES Workshop 2024

Accelerator Status Check

• View the Nvidia GPU nodes and number of GPUs

```
$pestat -p gpu -G
```

• View the Intel PVC nodes and number of GPUs

```
$pestat -p pvc -G
```

• Additional features on the PVC nodes

```
$ show_pvc_features
```

• IPU status will be introduced later

Copy Training Materials to Your Directory

- Navigate to your scratch directory
 - \$cd \$SCRATCH
- Files for this course are located at

/scratch/training/aces_wkshop_24

Make a copy in your personal scratch directory

\$ cp -r /scratch/training/aces_wkshop_24 \$SCRATCH

• Enter this directory (your local copy)

\$ cd \$SCRATCH/aces_wkshop_24

AI/ML on Nvidia GPUs

Env Setup (option 1)

clean up and load Anaconda cd \$SCRATCH module purge module load Anaconda3/2022.10

create a Python virtual environment
conda create -n pytorch-env

activate the virtual environment
source activate pytorch-env

install required package to be used in the portal
conda install pytorch torchvision torchaudio \
pytorch-cuda=11.8 -c pytorch -c nvidia

deactivate the virtual environment
source deactivate

Use Shared Environment (option 2)

- A shared environment was created by TAMU HPRC on ACES cluster
- Path:

/sw/hprc/sw/Anaconda3/2022.10/envs/pytorch-env

Hands-on Session

• Navigate to the nvidia-gpu exercises directory

\$cd \$SCRATCH/aces_wkshop_24/nvidia-gpu

- Open the python file (*main.py*) with your preferred editor (e.g. vim).
- Read the code in the file.
- Submit your job to Nvidia GPU queue.

\$ sbatch submit_job.sh

AI/ML on Graphcore IPUs

Graphcore Software Stack

Models on Graphcore GitHub

Vision	ResNet50, EfficientNet, DINO, MAE, Neural Image Fields, SWIN ((Shifted Windows Vision Transformers)), U-Net, ViT (Vision Transformer), YOLOv4, etc.
NLP	BERT, BLOOM-176B (BigScience Large Open-science Open-access Multilingual), GPT-2, GPT-3 2.7B, GPT-3 175B, GPT-J, etc.
Speech	Conformer, FastPitch, etc.
GNN	Cluster-GCN, GIN (Graph Isomorphism Network), NBFnet (Neural Bellman-Ford networks), SchNet, Spektral, TGN (Temporal Graph Networks), etc.
Multi-modal	CLIP, Frozen in time, MAGMA (Multimodal Augmentation of Generative Models through Adapter-based Finetuning), Mini DALL-E, etc.

Source: https://github.com/graphcore/examples

Training Materials

From the ACES login node, ssh into the poplar2 (BOW Pod16) IPU system:

ssh poplar2

Change to your scratch directory:

cd /localdata/\$USER && mkdir ipu_labs && cd ipu_labs

Copy the example materials to your scratch directory:

git clone https://github.com/graphcore/examples.git

Copy the hands-on exercise materials to your scratch directory:

git clone https://github.com/happidence1/IPU-Training.git

Poplar Software Development Kit (SDK) setup

source

/opt/gc/poplar/poplar_sdk-ubuntu_20_04-3.3.0+1403-208993bbb7/poplar-ub
untu_20_04-3.3.0+7857-b67b751185/enable.sh

source

/opt/gc/poplar/poplar_sdk-ubuntu_20_04-3.3.0+1403-208993bbb7/popart-ub
untu 20 04-3.3.0+7857-b67b751185/enable.sh

mkdir -p /localdata/\$USER/tmp
export TF_POPLAR_FLAGS=--executable_cache_path=/localdata/\$USER/tmp
export POPTORCH CACHE DIR=/localdata/\$USER/tmp

Run a TensorFlow (TF) model on Bow IPU

TF Virtual Environment Setup

virtualenv -p python3 venv_tf2

```
source venv tf2/bin/activate
```

```
python -m pip install
/opt/gc/poplar/poplar_sdk-ubuntu_20_04-3.3.0+1403-208993bbb7/
tensorflow-2.6.3+gc3.3.0+251582+08d96978c7f+intel_skylake512-
cp38-cp38-linux_x86_64.whl
```


Run a TensorFlow model on IPU

cd examples/tutorials/tutorials/tensorflow2/keras/completed_demos/

python completed_demo_ipu.py

• Deactivate the virtual environment after the model finishes running.

deactivate

Monitor IPU Usage - gc-monitor

- 4 partitions
- 16 IPUs
- Processes

Every 2.0s	s: gc-monitor				popla	r2: Th	u Ju	l 6 10:	33:31 2023
gc-monitor Partition: p17 [active] has 16 reconfigurable IPUs									
IPU-M	1 Serial	I IPU-M S	W Server versio	n 1	ICU FW 1	ype	ID	++ IPU#	Routing
10.5.5. 10.5.5. 10.5.5. 10.5.5.	1 0019.0002.82 1 0019.0002.82 1 0019.0001.82 1 0019.0001.82	222521 2.6.0 222521 2.6.0 222521 2.6.0 222521 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0		2.5.9 M 2.5.9 M 2.5.9 M 2.5.9 M	12000 12000 12000 12000	0 1 2 3	3 2 1 0	DNC DNC DNC DNC DNC
10.5.5. 10.5.5. 10.5.5. 10.5.5.	2 0021.0002.82 2 0021.0002.82 2 0021.0001.82 2 0021.0001.82 2 0021.0001.82	222521 2.6.0 222521 2.6.0 222521 2.6.0 222521 2.6.0 222521 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0		2.5.9 M 2.5.9 M 2.5.9 M 2.5.9 M	2000 2000 2000 2000	4 5 6 7	3 2 1 0	DNC DNC DNC DNC DNC
10.5.5. 10.5.5. 10.5.5. 10.5.5.	3 0013.0002.82 3 0013.0002.82 3 0013.0001.82 3 0013.0001.82 3 0013.0001.82	222521 2.6.0 222521 2.6.0 222521 2.6.0 222521 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0		2.5.9 M 2.5.9 M 2.5.9 M 2.5.9 M	2000 2000 2000 2000	8 9 10 11	3 2 1 0	DNC DNC DNC DNC DNC
10.5.5. 10.5.5. 10.5.5. 10.5.5.	4 0016.0002.82 4 0016.0002.82 4 0016.0001.82 4 0016.0001.82	222521 2.6.0 222521 2.6.0 222521 2.6.0 222521 2.6.0 222521 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0		2.5.9 M 2.5.9 M 2.5.9 M 2.5.9 M 2.5.9 M	12000 12000 12000 12000 12000	12 13 14 15	3 2 1 0	DNC DNC DNC DNC DNC
 	Attached processe	es in partition	+ p17		IPU		++ 	Вс	ard
PID	Command	+ Time	-++ User	ID	+ Clock	Tem	+ p	Temp	Power
902631	python	 50s	u.zh108696	0	 1500MHz	23.5	C	21.9 C	90.3 W

watch -n 2 gc-monitor

Run a PyTorch (PopTorch) model on Bow IPU

PopTorch Virtual Environment Setup

cd /localdata/\$USER/ipu_labs

virtualenv -p python3 poptorch_test

source poptorch_test/bin/activate

```
python -m pip install
/opt/gc/poplar/poplar_sdk-ubuntu_20_04-3.3.0+1403-208993bbb7/
poptorch-3.3.0+113432_960e9c294b_ubuntu_20_04-cp38-cp38-linux
_x86_64.whl
```

Run a PopTorch model on IPU

cd examples/tutorials/simple_applications/pytorch/mnist/

pip install -r requirements.txt

python mnist_poptorch.py

• Deactivate the virtual environment after the model finishes running.

deactivate

Monitor IPU Usage - gc-monitor

- 4 partitions
- 16 IPUs
- Processes
- IPU used
- Temperature
- Power

watch -n 2 gc-monitor

gc-monitor	. Pai	rtition: p	17 [active] has	16 reconfi	gurable	IPUs		
IPU-M	Serial	IPU-M SW	Server version	ICU FW	Type	ID	+ IPU#	Rout
10.5.5.1 10.5.5.1 10.5.5.1 10.5.5.1 10.5.5.1	0019.0002.8222521 0019.0002.8222521 0019.0001.8222521 0019.0001.8222521 0019.0001.8222521	2.6.0 2.6.0 2.6.0 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0	2.5.9 2.5.9 2.5.9 2.5.9 2.5.9	M2000 M2000 M2000 M2000 M2000	0 1 2 3	3 2 1 0	DN DN DN DN
10.5.5.2 10.5.5.2 10.5.5.2 10.5.5.2 10.5.5.2	0021.0002.8222521 0021.0002.8222521 0021.0001.8222521 0021.0001.8222521 0021.0001.8222521	2.6.0 2.6.0 2.6.0 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0	2.5.9 2.5.9 2.5.9 2.5.9 2.5.9	M2000 M2000 M2000 M2000 M2000	+ 4 5 6 7	3 2 1 0	DN DN DN DN
10.5.5.3 10.5.5.3 10.5.5.3 10.5.5.3 10.5.5.3	0013.0002.8222521 0013.0002.8222521 0013.0001.8222521 0013.0001.8222521 0013.0001.8222521	2.6.0 2.6.0 2.6.0 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0	2.5.9 2.5.9 2.5.9 2.5.9 2.5.9	M2000 M2000 M2000 M2000 M2000	+ 8 9 10 11	3 2 1 0	DN DN DN DN
10.5.5.4 10.5.5.4 10.5.5.4 10.5.5.4	0016.0002.8222521 0016.0002.8222521 0016.0001.8222521 0016.0001.8222521 0016.0001.8222521	2.6.0 2.6.0 2.6.0 2.6.0 2.6.0	1.11.0 1.11.0 1.11.0 1.11.0 1.11.0	2.5.9 2.5.9 2.5.9 2.5.9 2.5.9	M2000 M2000 M2000 M2000 M2000	12 13 14 15	3 2 1 0	DN DN DN DN

Time

17s

User

u.zh108696 |

Clock

| 1500MHz

Temp

Temp

23.5 C | 22.0 C | 90.8 W

ID |

0

ACES | u.tamu.edu /aces | ACES Workshop 2024

Command

python

PID

907530

Power

Hands-On Session

- Please access ACES and poplar2 now.
- Copy the tutorial materials to your scratch directory.
- Run the TensorFlow and PyTorch (PopTorch) example models on IPU

Porting TensorFlow Code to IPU

1. Import the TensorFlow IPU module

Add the following import statement to the beginning of your script:

from tensorflow.python import ipu

2. Preparing the dataset

• Make sure the sizes of the datasets are divisible by the batch size

def make_divisible(number, divisor):
 return number - number % divisor

• Adjust dataset lengths

```
(x_train, y_train), (x_test, y_test) = load_data()
train_data_len = x_train.shape[0]
train_data_len = make_divisible(train_data_len, batch_size)
x_train, y_train = x_train[:train_data_len], y_train[:train_data_len]
test_data_len = x_test.shape[0]
test_data_len = make_divisible(test_data_len, batch_size)
x_test, y_test = x_test[:test_data_len], y_test[:test_data_len]
```

3. Add IPU configuration

To use the IPU, you must create an IPU session configuration:

```
ipu_config = ipu.config.IPUConfig()
ipu_config.auto_select_ipus = 1
ipu_config.configure_ipu_system()
```

A full list of configuration options is available in the API documentation.

4. Specify IPU strategy

strategy = ipu.ipu_strategy.IPUStrategy()

The tf.distribute.Strategy is an API to distribute training and inference across multiple devices. IPUStrategy is a subclass which targets a system with one or more IPUs attached.

5. Wrap the model within the IPU strategy scope

- Creating variables and Keras models within the scope of the IPUStrategy object will ensure that they are placed on the IPU.
- To do this, we create a strategy.scope() context manager and move all the model code inside it.

Hands-on Session

• Activate the TF virtual environment

cd /localdata/\$USER/ipu_labs

source venv_tf2/bin/activate

• Change directory to Keras

cd IPU-Training/Keras

- Complete the **#Todo**s in the mnist-ipu-todo.py file.
- Run it in the **venv_tf2** virtual environment.

python mnist-ipu-todo.py

• After finishing the job, you can deactivate the virtual environment

deactivate

Porting PyTorch Code to Bow IPU

PopTorch

- PopTorch is a set of extensions for PyTorch released by Graphcore to enable PyTorch models to run on Graphcore's IPU hardware.
- PopTorch will use PopART to parallelise the model over the given number of IPUs. Additional parallelism can be expressed via a replication factor, which enables you to data-parallelise the model over more IPUs.

Training a model on IPU

• Import the packages

```
import torch
import poptorch
import torchvision
import torch.nn as nn
import matplotlib.pyplot as plt
from tqdm import tqdm
from sklearn.metrics import accuracy score
```


Load the Data

- PyTorch: torch.utils.data.DataLoader class
- PopTorch extension: poptorch.DataLoader class,
 - Specialized for the way the underlying PopART framework handles batching of data.

Build the Model

```
class ClassificationModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 5, 3)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(5, 12, 5)
        self.norm = nn.GroupNorm(3, 12)
        self.fc1 = nn.Linear(972, 100)
        self.fc2 = nn.Linear(100, 10)
        self.log_softmax =
nn.LogSoftmax(dim=1)
        self.loss = nn.NLLLoss()
```

```
def forward(self, x, labels=None):
        x =
self.pool(self.relu(self.conv1(x)))
        x =
self.norm(self.relu(self.conv2(x)))
        x = torch.flatten(x, start dim=1)
        x = self.relu(self.fc1(x))
        x = self.log softmax(self.fc2(x))
        # The model is responsible for the
calculation of the loss when using an IPU.
We do it this way:
        if self.training:
            return x, self.loss(x, labels)
        return x
model = ClassificationModel()
model.train()
```


Prepare training for IPUs

The compilation and execution on the IPU can be controlled using poptorch.Options. These options are used by PopTorch's wrappers such as poptorch.DataLoader and poptorch.trainingModel.

Train the model

```
optimizer = poptorch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
poptorch model = poptorch.trainingModel(model, options=opts,
optimizer=optimizer)
epochs = 30
for epoch in tqdm(range(epochs), desc="epochs"):
    total loss = 0.0
    for data, labels in tqdm(train dataloader, desc="batches", leave=False):
        output, loss = poptorch model(data, labels)
        total loss += loss
poptorch model.detachFromDevice()
torch.save(model.state dict(), "classifier.pth")
```


Evaluate the Model

```
model = model.eval()
poptorch model inf = poptorch.inferenceModel(model, options=opts)
test dataloader = poptorch.DataLoader(opts, test dataset, batch size=32,
    num workers=10)
predictions, labels = [], []
for data, label in test dataloader:
    predictions += poptorch model inf(data).data.max(dim=1).indices
    labels += label
poptorch model inf.detachFromDevice()
print(f"Eval accuracy: {100 * accuracy score(labels, predictions):.2f}%")
```


Hands-on Session

• Activate the Poptorch virtual environment

cd /localdata/\$USER/ipu_labs
source poptorch test/bin/activate

• Change directory to PyTorch

cd IPU-Training/PyTorch

- Complete the **#Todos** in the fashion-mnist-pytorch-ipu-todo.pyfile.
- Run it in the **poptorch_test** virtual environment.

pip install -r requirements.txt

python fashion-mnist-pytorch-ipu-todo.py

• After finishing the job, you can deactivate the virtual environment

deactivate

AI/ML on Intel PVC GPUs

Intel Data Center GPU Max Series PCIE Card

Intel Max GPU 1100

- 1 tile/stack per card
- 56 X^e cores, 448 execution units (8 per core)
- 300W PCIe Gen5 x16 card
- 48GB HBM2e memory
- 1.2 TB/s memory bandwidth
- 22 TF FP64 peak performance

Intel Data Center GPU Max Series PCIE Card

Intel[®] oneAPI Toolkits

(Source: Intel)

Using PVCs on ACES

OPyTorch **TensorFlow**

Environment Setup for PyTorch Models

Use Intel AI Analytics Toolkit

fi

```
# load all the necessary modules
module purge
module load intel/AIKit/2023.2.0
module load intel/2023.07
```

activate the conda environment

source activate \$ENV_NAME

```
ENV_NAME=aikit-pt-gpu-clone
```

```
# If it doesn't exist, create the environment
if ! conda env list | grep -q "$ENV_NAME"; then
```

```
conda create -n $ENV_NAME --clone aikit-pt-gpu
```

in pt_demo.slurm

Environment Setup for PyTorch Models

Use Python Virtual Environment (Alternative for reference)

Change to pytorch directory
cd \$SCRATCH/aces_pvc_course_24s/pytorch

Load modules
module load WebProxy
module load intel/2023.03
module load Python/3.10.8

Create and activate a Pytoon virtual environment
python -m venv pt-pvc-labs
source pt-pvc-labs/bin/activate

Environment Setup for PyTorch Models

Use Python Virtual Environment (Alternative for reference)

Install torch, torchvision and one cl_bindings_for_pytorch
python -m pip install torch==1.13.0a0+git6c9b55e
torchvision==0.14.1a0 intel_extension_for_pytorch==1.13.120+xpu -f
https://developer.intel.com/ipex-whl-stable-xpu

python -m pip install oneccl_bind_pt==1.13.200+gpu -f
https://developer.intel.com/ipex-whl-stable-xpu

Run PyTorch ResNet50 model

- We have prepared a Slurm job file (*pt_demo.slurm*) to run the PyTorch ResNet50 model. Submit the job using the command
- \$ cd pytorch/
- \$ sbatch pt_demo.slurm

Environment Setup for TensorFlow Models

Using the Intel AI Analytics Toolkit

```
# load all the necessary modules
module purge
module load WebProxy
module load intel/2023.07
module load intel/AIKit/2023.1.0
```

```
ENV_NAME=aikit-tf-gpu-clone
```

activate the conda environment

source activate \$ENV_NAME

```
# If it doesn't exist, create the environment
if ! conda env list | grep -q "$ENV_NAME"; then
```

```
conda create —n $ENV_NAME ——clone aikit—tf—gpu
```

in tf_demo.slurm

fi

Run Tensorflow ResNet50 Model

• We have prepared a Slurm job file (*tf_demo.slurm*) to run the Tensorflow ResNet50 model. Submit the job using the command

\$ cd ..

\$ cd tensorflow/

\$ sbatch tf_demo.slurm

To Continue at PEARC24

Intel Data Center GPU Max Series PCIE Card

Texas A&M at PEARC24

Talk/Event	Date/Time	Room
Tutorial: Hands-on exercises on the Intel Data Center GPU Max 1100 (PVC-GPU) for AI/ML and Molecular	Mon, July 22, 2024 9:00 AM-12:30 PM ET	Room 553B
Seventh Workshop on Strategies for Enhancing HPC Education and Training (SEHET24)	Mon, July 22, 2024 9:00 AM-12:30 PM ET	Room 557
Workshop: Providing cutting-edge computing testbeds to the science and engineering community	Mon, July 22, 2024 1:30 PM-5:00 PM ET	Room 554A
Workshop: Engaging Secondary Students in Computing: K12 Outreach	Mon, July 22, 2024 1:30 PM-5:00 PM ET	Room 553A
Cultivating Cyberinfrastructure Careers through Student Engagement at Texas A&M University High Performance Research Computing	Tue, July 23, 2024 11:00 AM-11:25 AM ET	Junior Ballroom
Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units	Tue, July 23, 2024 11:00 AM-11:25 AM ET	Room 551 A&B
BOF 4: What's in it for me? How can we truly democratize the research computing and data community?	Tue, July 23, 2024 1:30 PM-2:30 PM ET	Room 551 A&B

Texas A&M at PEARC24

Talk/Event	Date/Time	Room
BRICCs: Building Pathways to Research Cyberinfrastructure at Under Resourced Institutions	Tue, July 23, 2024 3:25 PM-3:50 PM ET	Junior Ballroom
Memory Bandwidth Performance across Accelerators	Tue, July 23, 2024 3:25 PM-3:50 PM ET	Ballroom B
Container Adoption in Campus High Performance Computing	Wed, July 24, 2024 11:00 AM-11:25 AM ET	Ballroom B
Engaging Secondary Students in Computing and Cybersecurity	Wed, July 24, 2024 3:15 PM-3:30 PM ET	Room 557
Exploring the Viability of Composable Architectures to Overcome Memory Limitations in High Performance Computing Workflows	Wed, July 24, 2024 3:45 PM-4:00 PM ET	Room 553 A&B
Performance of Molecular Dynamics Acceleration Strategies on Composable Cyberinfrastructure	Wed, July 24, 2024 4:15 PM-4:30 PM ET	Room 551 A&B
BOF 17: Fantastic ACCESS Cyberinfrastructure Resources and Where to Find Them	Wed, July 24, 2024 4:45 PM-5:45 PM ET	Room 553 A&B
BOF 18: Recipes to build successful cross-institutional collaborative computing	Wed, July 24, 2024 4:45 PM-5:45 PM ET	Junior Ballroom

High Performance Research Computing DIVISION OF RESEARCH

Thank you

- We gratefully acknowledge support from National Science Foundation awards #2112356 (ACES).
- Please visit our talks and BoFs at PEARC24
- Helpdesk: <u>help@hprc.tamu.edu</u>

